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Abstract—The goal of early action recognition is to predict
action label when the sequence is partially observed. The existing
methods treat the early action recognition task as sequential
classification problems on different observation ratios of an
action sequence. Since these models are trained by differentiating
positive category from all negative classes, the diverse information
of different negative categories is ignored, which we believe can
be collected to help improve the recognition performance. In this
paper, we step towards to a new direction by introducing category
exclusion to early action recognition. We model the exclusion as
a mask operation on the classification probability output of a
pre-trained early action recognition classifier. Specifically, we use
policy-based reinforcement learning to train an agent. The agent
generates a series of binary masks to exclude interfering negative
categories during action execution and hence help improve the
recognition accuracy. The proposed method is evaluated on three
benchmark recognition datasets, NTU-RGBD, First-Person Hand
Action, as well as UCF-101. The proposed method enhances the
recognition accuracy consistently over all different observation
ratios on the three datasets, where the accuracy improvements
on the early stages are especially significant.

Index Terms—Category Exclusion, Early Action Recognition,
Policy-based Reinforcement Learning

I. Introduction

Action recognition is a fundamental task of video analysis in
the computer vision community. In the past decades, this task
has grown dramatically and achieved great success. However,
action recognition focuses only on the after-the-fact detec-
tion. In many real-world scenarios like surveillance, human-
computer interaction, autonomous driving, etc., systems are
required to identify an intended activity of human before the
activity is fully executed in real-time, which gives birth to a
relatively new research topic, Early Action Recognition. Early
action recognition, or action prediction, aims to predict the
action label from partially observed video. As many actions
are very similar to each other at the beginning few frames,
it is not easy to extract discriminative features to distinguish
one action from others. This visual similarity, especially at the
early stages, makes early action recognition very challenging.
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To date, the existing methods [16, 2, 3, 15, 1, 13, 14, 4]
consider the early action recognition as classification prob-
lems at different time stages of an action sequence. Features
extracted from each timing point are supervised by labels to
activate the probability "response" of positive category and
suppress the "responses" of negative ones. In this learning
mode, the goal is to distinguish the positive category from
all negative categories. Negative categories are treated equally.
However in reality, the relationships between the positive
category and different negative categories are not identical.
Due to visual similarity, capturing error, illumination variation,
various performing style, etc., the positive cluster may be quite
close to some negative clusters, but be far away from other
negative ones. This situation is more prominent at the early
stages of actions. The diverse information of different negative
categories is ignored in the existing action learning mode, and
therefore the corresponding information bear in the input data
is filtered out. We believe that this diverse information of
negative categories can be leveraged to boost the recognition
performance.

When we human recognize a continuous action, we often
make a decision by unconsciously excluding candidate cate-
gories. Let’s take recognizing triple jump from track-and-field
sports for example. When we observe an athlete running on a
track, which is the early stage of triple jump, we are sure
that this is not a field-based sport, and therefore the field-
based categories can be excluded. By this exclusion, we can
eliminate interferences and improve the accuracy of guessing.
In early action recognition, a model can be trained to learn
the exclusion of the negative categories similar to the positive
category, which further separates the negative categories into
hard-to-differentiate ones and easy-to-differentiate ones. This
reasoning can be regarded as eliminative induction. To the best
of our knowledge, there is no previous methods introducing
this reasoning into the task, and this paper is one step, and the
first attempt, towards this direction.

In this paper, we pre-train a classifier of all categories,
and model the category exclusion as a mask operation on
the classification probability output of the classifier. Since
there is no ground truth of category exclusion, and Reinforce-
ment Learning is an efficient way for learning an optimal
policy based on future reward, we modify the reinforcement
learning framework to train an agent to learn the category
exclusion strategies with multiple rewards for each operation.
During training, the agent explores different combinations of
excluded categories and searches for the optimal policy that
helps improve the recognition performance. Fig.1 illustrates
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the framework of the proposed method. During testing, the
pre-trained classifier outputs classification probability of all
categories based on its observation. At each observation ratio,
the agent checks its input state and generates binary masks
to mask out the classification probabilities of the interfering
negative categories, i.e., category exclusion.

By introducing the idea of eliminative induction into the task
of early action recognition, which is different from the existing
methods, we propose a category exclusion agent model to
cooperate with a sequential classifier for early recognition. Due
to the mechanism behind the agent is different from the tradi-
tional sequential classifier, the collaboration of the agent and
the classifier thus utilizes complementary information of time
dynamic in action sequence, and achieves better performance
than the classifier alone. We evaluate the proposed method on
three benchmark datasets with extensive experiments, and the
results show the efficiency of our proposed method.

II. Related Work
Human action analysis is an important topic in computer vi-

sion community. To well understand human behaviors through
videos, basic tasks like action recognition, early action recog-
nition need to be considered and solved.

A. Action Recognition
In action recognition, the data to be analyzed is fully

observed segmented video. Each video includes only one
action instance. The goal of action recognition is to take a
segmented video as input and output a category label. This task
has been widely explored in the community. Considering that
action recognition is a basic classification problem, the visual
representation of videos becomes a critical part in research,
and it attracts heated attention from researchers.

Traditional methods focus on how to design discrimina-
tive hand-crafted features for action description. In image-
based action recognition, the representative approaches include
Cuboids [19, 20], 3D Historgram of Gradient (3D HoG) [22],
Space-Time Interest Point (STIP) [21], 3D SIFT [23], and
Dense Trajectory [24, 25] etc., which model the spatio-
temporal property of action sequence into the representation.
With the development of deep learning, a few deep-learning-
based models are proposed for action recognition. Three
dimensional convolution neural network (3D CNN) [65, 27,
28, 68] is one of the representative models. In 3D CNN,
the two dimensional convolution operator in 2D CNN is
extended to extract spatio-temporal information for action se-
quences, which achieves satisfactory recognition performance.
Another promising action recognition structure is the Two-
streams model [31, 30], in which two CNNs are involved to
extract the appearance and motion features of action sequences
respectively. Another aspect of action recognition in deep
learning is the Temporal Convolution Network [58] (TCN) for
temporal modeling of action sequence. After the TCN, a few
variants of it are proposed. The idea of deformable convolution
kernel is introduced in Deformable TCN [60] to model optimal
temporal receptive field. The Dense TCN is proposed in [57]
to capture human actions in hierarchical views.

In skeleton-based action recognition, the input data is a
sequence of human 3D poses. Each pose consists of the three-
dimensional coordinates of body joints. The state-of-the-arts
can be separated into two groups, the traditional models [33,
34, 36, 37, 38, 9, 40, 39, 41, 42, 43], and the deep-learning-
based models [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].
The traditional methods focus on artificially designing discrim-
inative features for good classification performance. However,
these hand-crafted features need a lot of effort on the design.
Given the limited complexity of the classifier, these methods
only suitable for small-size dataset. The renaissance of deep
learning technique boosts the development of the machine
learning community. The increased structure complexity and
the sophisticated non-linearity of deep learning model bring
effectiveness of machine learning on large-scale datasets. Due
to the tremendous amount of these works, we limit the review
to a few representative works.

In SMIJ [39], the most informative joints are selected simply
based on measures such as mean or variance of joint angle
trajectories. The sequence of these informative joints is then
used as the representation of an action. Weng et. al. proposed
ST-NBNN [38] to discover the key joints and key frames of
pose sequences, in which the well-known NBNN in image
classification is extended to solve sequence classification task.
The ST-NBNN model is further developed in ST-NBMIM [9]
to achieve more discriminative action representation. The
rolling rotation of pose motion dynamics is a variant feature
for skeleton-based action recognition. In [41], the a rolling
rotation representation is proposed for 3D skeletal data. Before
the Graph Convolution Neural Network (G-CNN) is widely
discussed in this community, Wang et. al. [43] proposed a tra-
ditional graph-based pose motion representation for 3D action
recognition, which fully utilizes the topological structure of
3D human pose as a graph.

The deep-learning-based models can be further categorized
as the RNN-based models, and the CNN-based models. The
RNN-based models mainly use the recurrent neural network
to model the temporal dynamics of action sequence. Song
et. al. proposed a Spatio-Temporal Attention LSTM (STA-
LSTM) [48] for 3D action recognition, in which two sub-
LSTMs are involved for spatial and temporal attention dynam-
ics on temporal domain. However, in [44], the LSTM is re-
designed to construct the spatio-temporal dependency of pose
joints in action sequence. The convolution neural network is
applied in action recognition task in three different ways. In
Deformable Pose Traversal Convolution Network [32], one-
dimensional convolutional operator is used for pose feature
extraction, which is spatial modeling. In [18], one-dimensional
convolution network [18] is involved to extract temporal fea-
tures of partial action sequence for temporal modeling. In [54],
each 3D pose sequence is transformed to trajectory maps, and
2D CNN is used to extract sequence-level representation for
action recognition, which can be regarded as spatio-temporal
modeling. G-CNN based models like [56] fully utilize the
property that human body pose is a undirected acyclic graph
to extract features from pose-based action sequence, and these
models achieve promising results.
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Fig. 1. Illustration of category exclusion in early action recognition. Frames of the action sequence are fed into the LSTM classifier (orange squares) one by
one to extract features and output action classification probability (gray, white, and green bars). The action classification probability, the mask from previous
stage, and the features from local segment are further fed into the agent to generate masks for category exclusion.

B. Early Action Recognition

Dissimilar to the action recognition task, where actions
are well-segmented and assumed to be fully executed and
observed, early action recognition is another important task
aiming to predict the action label contained in a partially
observed video.

Before deep learning technique is widely-applied in com-
puter vision, many traditional methods are proposed to solve
the early action recognition task. Ryoo et al. [4] propose to
involve the well-known integral bag-of-words and dynamic
bag-of-words into the action prediction task. Kong et al. [16]
and Lan et al. [17] introduce the Support Vector Machine
(SVM) into the early recognition. A soft regression framework
is proposed in [1] for activity prediction. Recently, many
deep-learning-based methods come out. Hu et al. extend
their soft regression framework into the Recurrent Neural
Network (RNN) model [13], which achieves great recognition
performance. Kong et al. attempt to bridge the relationship
between partial video features and full video features, and
propose the Deep Sequential Context Network (DeepSCN) [3].
In Hierarchical LSTM [61], an adaptive clip mining strategy
is introduced for better online visual representation learning.
The Long Short-Term Memory (LSTM) model is re-designed
in [15] to memorize hard-to-predict samples for early action
recognition. Considering the changing scale of partial actions,
a Scale Selection Network is proposed in [18] for action
prediction of video stream.

All these methods consider the early action recognition
as a series of classification problems. Compared with these

methods, we consider to take the diverse information of nega-
tive categories into consideration. The proposed coordination
between category exclusion strategy and sequential classifiers
utilizes more information from action sequence than that
utilized by classifiers alone, which helps better recognize early
actions.

III. Proposed Method
In this section, we introduce how the proposed method

excludes categories during action performing and meanwhile
predicts actions at different stages of the sequence. The frame-
work of our method is illustrated in Fig.1. The formulation of
this proposed method for the early action recognition task is
first introduced in Sec.III-A. Then we describe how to model
the category exclusion in action recognition in Sec.III-B. The
training of the category exclusion agent is detailed in Sec.III-C.
To differentiate the action performed by subjects in the action
sequence and the action determined by the agent as a policy,
we apply italics on the second term.

A. Problem Formulation
Given a pre-trimmed sequence V = {zt }Tt=1 with its

sequence-level label c ∈ C = {1, 2, ...,C}, where C is the
number of category, the goal of early recognition task is to
predict the frame-level label ct = c at each timing based on the
observation z1:t , and provide the accurate recognition as early
as possible. Following the existing setting in [2, 3, 1, 4], we
uniformly partition a video sequence which includes complete
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action execution into N shorter segments. Each segment
contains ⌈T/N⌉ frames, where ⌈·⌉ is the rounding up operation.
The observation ratio on is then defined as n/N , which
indicates the first n segments are observed. The n-th stage
corresponds to the observation ratio on . There are N stages for
each sequence. The index of the last frame in the n-th segment
is t = n⌈T/N⌉. We denote xn as the feature extracted from
the first n segments, and therefore xN is the representation
for the whole sequence. With these notations, our task can be
formulated based on maximum a posteriori (MAP) rule,

c∗n = arg max
c∈C(sn )

p(c |xn ). (1)

Considering that the number of candidate categories from
the set C may decrease during action execution based on
the situation of category exclusion, this set is defined as a
function of the state sn observed by the agent. As defined in
Eq.(1), there are two parts in our proposed method, a classifier
for frame-level action prediction and an agent for category
exclusion. At each stage n, the agent takes a state sn as input
and decides which categories to be excluded, and the classifier
will predict action category from the modified category set
C(sn ).

B. Category Exclusion Modeling
The category exclusion is modeled as a mask operation on

the action prediction output from the classifier. Specifically,
the classifier in our framework is an action prediction function
f : xn → dn ∈ [0 , 1]C involved to estimate the probability of
classification in Eq.(1). dn consists of the estimated probability
of each action category, namely dc

n = p(c|xn ). To exclude
categories, a corresponding binary vector mn ∈ {0 , 1}C is
generated at each observation ratio on to mask out some
negative categories (dimensions) of dn . Each element of mn

is denoted as mc
n . mc

n = 1 indicates that the category c is not
excluded, and mc

n = 0 indicates that the category c is excluded.
Hence, the formulation in Eq.(1) can be rewritten as

c∗n = arg max
c∈C

p(c|xn ) mc
n = arg max

c∈C
dc
n mc

n . (2)

We model the progression of category exclusion as a
Markov Decision Process. In considering that the set of
excluded category is specific for each action sequence, it is
impossible to annotate the exclusion mask ground truth for
each of them, and train the agent by supervised learning. We
therefore utilize reinforcement learning to learn the category
exclusion strategy. The agent explores various exclusion
strategies and discovers the optimal ones guided by the
designed reward. The process of reinforcement learning is to
train the agent to map the input states to actions for optimal
strategy. The three key parts of the reinforcement learning,
state, action, and reward are detailed as below.

State: To ensure there is enough information from the
partially observed sequence for the agent, we introduce three
different state parts in our method. The feature hn extracted
from the partially observed video, the current classification

probability dn , and the previous generated exclusion mask
mn−1, i.e., sn = (hn, dn, mn−1). At each observation ratio
on , these three parts are concatenated together, and fed into
the agent for mask generation.

Action: As described above, the action is defined as a
mask operation. The main part of the agent is a function
g : s → u ∈ {0 , 1}C , which is approximated by a neural
network ĝ : s → v ∈ [0 , 1]C . This network is designed
and trained to select the categories to be excluded or kept
based on the state it observes. The c-th dimension of this
network’s output ĝc (s) denotes the inclusion probability with
which we keep the estimated classification probability of the
c-th category. The lower the inclusion probability, the higher
possibility that we exclude the corresponding category. The
network induces a probability distribution over the mask
space, i.e., {0 , 1}C , and the probability of a mask u is given
by

π(s) =
C∏
c=1

ĝc (s)u
c

(1 − ĝc (s))1−uc

. (3)

At the beginning of each action execution, the binary mask
m is initialized as a vector with all elements set to one, i.e.,
m0 = [1, ... , 1]. During action execution, the agent generates
a series of immediate binary masks {un }Nn=1, un ∈ {0 , 1}C ,
which help accumulate excluded categories recorded in m. The
update of the accumulated mask m is defined as

mn = mn−1 ⊙ un, (4)

where ⊙ is an element-wise multiplication operation. Since
un is a binary mask, the accumulated mask mn is also binary.

Reward: During the training, the agent explores different
action combinations to learn exclusion strategies. The reward
is designed as the guidance for the agent to learn the optimal
strategy. In early action recognition, information might not be
sufficient to exclude all negative categories. To achieve better
recognition performance, especially at low observation ratio,
it is essential to exclude the interfering categories, which are
negative categories but bearing estimated class probabilities
on a par with the positive category. Therefore, the reward
design should encourage the agent to exclude those negative
categories with high estimated classification probability
and ignore those with low estimated one. However, in the
traditional reinforcement learning framework, there is just
one reward R ∈ R for one operation, which is not suitable
for our task. We therefore introduce a Multi-rewards for
One Operation learning strategy to learn category exclusion
patterns. Meanwhile, to avoid the positive category is wrongly
excluded, exclusion of any positive category should be
strongly punished in our design. Based on the consideration
above, we set reward for each individual category dimension,
and the immediate reward r ∈ RC is defined as

rcn =
{
− sign(mc

n ) η, i f c = c+

sign(mc
n ) dc

n, i f c , c+, (5)
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where η is a constant encouraging the agent to maintain the
positive category c+. The function sign(x) is a sign function
introduced to steer the direction between encouragement and
punishment of chosen action. The function sign(x) returns
1 when x equals to 0, and returns −1 when x equals to 1.
With the immediate reward defined in Eq.(5), the accumulated
reward R ∈ RC is defined as Rn = (

∑N
i=n ri )/(N − n + 1),

which is the average value of the immediate rewards from
current stage n to the end.

C. Agent Training
The goal of the agent training in our proposed method is

to learn a optimal category exclusion strategy. This learned
strategy can be directly applied on the testing sequences to
exclude negative interfering categories, and thus helps improve
early action recognition performance. To achieve this, we
use the well-known policy-gradient learning alogrithm REIN-
FORCE [6] to train the agent and maximize the accumulated
rewards. During agent training, the agent generates binary
masks un by choosing categories to be excluded randomly
following the estimated inclusion probability outputted from
the network ĝ(·). Each action the agent chooses is punished or
encouraged on the basis of the obtained reward. In traditional
policy-gradient reinforcement learning, the agent receives a
scalar reward R for optimization. To optimize the agent, the
goal is to minimize the following loss function

Lr
n = − log

(
π(sn )

)
Rn

= −
C∑
c=1

[
uc
n log(ĝcn ) + (1 − uc

n ) log(1 − ĝcn )
]
Rn, (6)

where the ĝcn is short for ĝc (sn ). The loss defined above can
be regarded as a reward-weighted binary cross entropy. The
higher the reward Rn , the more important the activation of
the probability π(sn ) to the related action un .

While in our method, as we described in Sec.III-B, to
improve the searching efficiency in exclusion strategy space,
we introduce the Multi-rewards for One Operation strategy in
our training, and therefore the optimization of the agent is to
minimize the loss function Eq.(7).

Lr
n = −

C∑
c=1

[
uc
n log(ĝcn ) + (1 − uc

n ) log(1 − ĝcn )
]
R̃c
n, (7)

We normalize R to be R̃ here to strengthen the gradient de-
scent. For the reward set {Rn }Nn=1 of a certain action sequence,
we pick the highest reward value as the normalization factor
to rescale these rewards to range [0, 1]. The training procedure
of the proposed method is summarized in Alg. 1.

IV. Experiment
In this section, we evaluate the proposed method on three ac-

tion benchmark datasets, the NTU-RGBD dataset [5], the First-
Person Hand Action (FPHA) dataset [7] as well as the UCF-
101 dataset [8], and compare its performance to the existing
methods. We briefly introduce the datasets in Sec.IV-B. The

Algorithm 1: Category Exclusion Learning
Input: Training videos {Vk }Kk=1, Labels {ck }Kk=1
Output: Exclusion agent ĝ(·)

Train f (·) with V and c by supervised learning
Obtain 1) Class probability {dn }Nn=1 of every sample

2) Feature {hn }Nn=1 of every sample

Initialize the agent ĝ(·)
for epoch ← 1 to E do

for k ← 1 to K do
initialize mask m0 ← 1
for n ← 1 to N do

get dn and hn from sample Vk

explore un with ĝ(dn,mn−1, hn )
update mn using un by Eq.(4)
obtain reward rn using mn and dn by Eq.(5)

end

compute the normalized reward R̃ by {rn }Nn=1
compute the loss Lr by Eq.(7)
update agent ĝ(·)

end
end

implementation details are described in Sec.IV-A. Comparison
experiments and analysis on the three datasets are discussed
in Sec.IV-C. The evaluation results show the efficiency of the
proposed method.

A. Implementation
Features: There are two models in the proposed method, the
baseline classifier and the agent for category exclusion. We
use the 3D pose data in the NTU-RGBD and the First-Person
Hand Action dataset. We follow the pre-processing method
described in [9, 7] to process the pose data. For the training
of f (·) on the 3D datasets, we directly use the raw pose as
the input feature zt . The accumulated hidden feature bear in
LSTM is regarded as feature xn for classification. We denote
wn as the temporal local window of length l at the end of the
n-th partial video segment. For the classifier training on the
UCF-101 dataset, images zt in wn are concatenated together
and fed into 3D ResNeXt-101 network [68] pre-trained on
Kinetics dataset [10] for visual features z̄n .

The trained classifier f (·) is further used to generate classifi-
cation probability dn for agent training. During agent training,
we suppress those classification probability lower than random
guess, i.e., dc

n < 1/C, by setting them to zeros to reduce the
data noise and avoid overfitting in training. For the two 3D
pose datasets, hn is the concatenated raw pose data from local
window wn . For UCF-101, the feature hn for agent is the same
as z̄n .

To inform the agent to be aware of the exclusion situation
in the previous one stage, we add one more information
d̄n = dn ⊙ mn−1 to the classification probability part of the
input state. Considering that the input to the agent consists of
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Observation Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% AUC

N-CS : w/o Exc. 26.41 32.67 42.48 52.33 60.49 65.86 69.78 72.21 73.99 75.20 55.83
N-CS : w/ Exc. 29.39 35.56 45.25 54.63 62.07 67.08 70.63 72.91 74.54 75.53 57.51

N-CV : w/o Exc. 27.39 33.86 43.55 54.70 63.25 68.85 72.34 74.86 76.56 77.84 57.93
N-CV : w/ Exc. 30.55 37.22 46.95 57.18 64.97 69.92 73.13 75.41 76.88 77.99 59.71

FPHA : w/o Exc. 45.91 54.26 61.39 63.30 65.74 69.22 70.61 72.17 73.39 74.43 64.11
FPHA : w/ Exc. 52.00 59.65 64.52 65.91 67.65 70.43 72.00 73.57 74.26 74.96 66.66

UCF : w/o Exc. 80.61 84.11 85.96 87.37 88.38 88.76 89.60 89.68 90.47 90.66 87.56
UCF : w/ Exc. 81.48 84.74 86.47 87.86 88.78 89.11 89.92 89.95 90.55 90.79 87.97

TABLE I
Early recognition accuracy comparison with baseline on two settings (CS & CV) of NTU-RGBD, FPHA and UCF-101 datasets (%)
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Fig. 2. Comparison of early recognition curves. The recognition curve of our proposed method is marked by Purple.
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Fig. 3. Illustration of linear feature embedding layers (FPHA)

multiple parts, (hn, dn, mn−1, d̄n ), it is necessary to project
these different features into the same embedding space for
better representation. We therefore add linear embedding
layers before the flow of these features into the agent. The
feature embedding layers are illustrated in Fig.3, which takes
the case of FPHA dataset as an example. The classification
probability part is embedded as a 64-dim vector, the exclusion
mask part is embedded as a 32-dim vector, and the local data
is embedded as a 128-dim vector in the FPHA dataset, as
shown in Fig.3. The embedded version of different parts are
then concatenated together and fed into the agent.

Training: Without loss of generality, we use LSTM [11]

as the sequential classifier the agent cooperates with. The
sequential classifier can be any model including Graph
Convolutional Neural Network [56, 64, 63], 3D Convolutional
Neural Network [65, 67, 66, 68] once these models are well-
designed for sequential classification. The LSTM classifier
is trained with frame-level label supervision, and optimized
by Adam [12]. The output of f (·) is further processed by
Softmax function to have classification probability. For NTU
dataset, f (·) is a three-layers LSTM with 100 neurons in each
layer. The learning rate is set to 0.005. For FPHA dataset, the
LSTM classifier has one layer with 100 neurons. The learning
rate is set to 0.005. For the UCF-101 dataset, the classifier
has one layer and the number of neuron is 512. The learning
rate is set to 0.1.

The agent is a two-layers RNN with 100 neurons in each
layer for the NTU and FPHA dataset. For the UCF-101 dataset,
the agent is a one-layer RNN with 100 neurons. To ensure that
the range of each dimension of agents’ output value is [0, 1]
to have inclusion probabilities, we locate Sigmoid functions at
the output end of the agent. Inclusion probabilities that larger
than 0.5 are re-assigned as 1, and the ones lower than 0.5 are
re-assigned as 0. The consequent binary vector is the u defined
in Sec.III-B. The learning rate is set to 0.0005 in the training.
The batch sizes are 128, 16 and 512 for the NTU FPHA and
UCF-101 dataset respectively.
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Fig. 4. The confusion matrices before and after exclusion and their difference at the observation ratio 5% (FPHA). The difference matrix is the difference
between the confusion matrices after and before exclusion. The negative values are marked by red and the positive values are marked by blue in this difference
matrix.

B. Dataset

NTU-RGB+D. The NTU-RGB+D dataset is currently the
most challenging RGB-D dataset in 3D action recognition.
It is collected with Kinect V2 depth camera. There are
around 56,000 sequences in total. 60 different action classes
are performed by 40 subjects aged from 10 to 35. There
are 25 joints included in each skeletal pose. We follow the
protocol introduced in [5] to conduct the experiment. This
dataset has two standard evaluation settings, the cross-subject
(CS) evaluation and the cross-view (CV) evaluation. In
cross-subject setting, half of the subjects are used for training
and the remaining ones are for testing. In cross-view setting,
two of the three views are used for training and the left one
is for testing. In this dataset, we set N to 20, and the results
of NTU dataset are all based on this setting. The size of the
local window l is set to 10. The positive reward constant η is
set as 1.2.

First-Person Hand Action. This is a publicly available
dataset for 3D hand-object interaction recognition that
contains labels for 3D hand pose, 6D object pose and
action categories. We use this dataset to evaluate the
early recognition performance of our proposed method. In
this dataset, each hand pose consists of 21 joints. There
are 45 indoor hand-object interaction categories included.
This dataset contains 1,175 action videos performed by
six actors. We follow the protocol described in [7] to
evaluate our method. There are 600 action sequences for
training and 575 samples for testing. We set N to 20 and l
to 10 in this dataset. The positive reward constant η is set as 1.

UCF-101. The UCF-101 dataset is an unconstrained RGB
video-based dataset. It contains 13,320 videos distributed
in 101 action categories. We follow the settings in [3] to
evaluate our method. The first 15 groups of videos are used
for training, the next three groups are used for validation, and
the rest ones are for testing. There are 3,682 full videos in
total for testing. We set N to 10 and l to 16 in this dataset.

The positive reward constant η is set as 1.

C. Results and Analysis
Comparison with Baseline and the State-of-the-arts
We compare the early action recognition performance of the
proposed method with the baseline on the three datasets, the
NTU-RGBD dataset, the FPHA dataset and the UCF-101
dataset. The comparison results are shown in TableI with differ-
ent observation ratios. The notations ’w/o Exc.’ and ’w/ Exc.’
are classification without Category Exclusion and classification
with Category Exclusion respectively. The ’w/o Exc.’ is the
baseline. The AUC is abbreviated for Area under Curve, which
is equivalent to the average accuracy over all observation
ratios. The accuracies higher than the baseline (w/o Exc.) are
emboldened. As can be seen, the proposed method achieves
better performance consistently on all observation ratios which
indicates the effectiveness and reliability of our method. The
AUC or the average accuracy improvements are 1.69%, 1.78%,
2.13% and 0.41% for the two settings of the NTU, FPHA,
and UCF-101 datasets respectively. The performance gains
at the early stages are significant, higher than the ones at
the late stages. On the observation ratio 10%, the accuracy
improvements are much higher with 2.98%, 3.16%, 5.74% and
0.87% respectively.

We also compare the performance of the proposed method
with the existing methods, MS-RNN [13], DeepSCN [3],
RankLSTM [14], MemLSTM [15], and MTS-SVM [16] on
the NTU and UCF-101 dataset. Here for the NTU dataset,
we only use the 3D pose data for the evaluation. However,
those methods included in the comparison use not only the
3D pose data, but the RGB and Depth data as well. As can
be seen from Fig.2, with the feature used in our model, the
proposed method can achieve comparable performance with
the state-of-the-arts or beats some of them, which indicates
the efficiency of our method.

Mask Exclusion Analysis
To be detailed, we show the confusion matrices before
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Fig. 5. Mask Statistics on FPHA. Each row of the matrix is the average mask of the binary mask over all input videos of the corresponding category. Each
dimension of each row shows the exclusion situation of that related category.

Observation Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% AUC

w/o Exc. 45.91 54.26 61.39 63.30 65.74 69.22 70.61 72.17 73.39 74.43 64.11

w/ Exc.-None 46.43 54.61 61.74 63.13 65.22 68.35 69.74 71.83 72.87 74.09 63.85
w/ Exc.-Hid 51.83 58.61 64.00 64.87 66.78 69.22 70.43 71.65 72.35 73.22 65.46

w/ Exc.-Local 52.00 59.65 64.52 65.91 67.65 70.43 72.00 73.57 74.26 74.96 66.66
w/ Exc.-Hid+Local 53.91 60.17 65.39 66.78 68.35 70.61 72.17 73.22 73.74 74.61 67.04

TABLE II
Early recognition ablation study on FPHA (%)

and after exclusion as well as their difference in Fig.4.
The evaluation is conducted on the FPHA dataset, and the
confusion matrix is based on the classification situation
of observation ratio 5%. As can be seen from the figure,
after exclusion, the diagonal elements of confusion matrix
are strengthened, while the off diagonal elements are
weakened for many categories. In the difference confusion
matrix, the blue squares on the diagonal line indicate the
accuracy improvements after exclusion, and the red ones off
diagonal line indicate the drops of misclassification rates
after exclusion. Two phenomena can be summarized from the
difference confusion matrix. 1) The squares on the diagonal
are the classification accuracies of different categories. We
can see that for most of the categories, there are accuracy
improvements after exclusion; 2) The off diagonal squares are
misclassification rates of different categories. There are many
red squares in this area, which indicates the misclassification
rates of most categories decreases. There are also small
number of blue squares located in this off diagonal area,
showing a little price of the proposed scheme.

To further check the exclusion mask distribution among
different samples, we visualize the statistics of the exclusion
mask generated from training and testing samples of FPHA
dataset. The visualizations are shown in Fig.5. Considering
that for each action sequence, the exclusion mask generated
at the final stage is the accumulation of the ones from the
previous stages, as defined in Eq.(4), we use the accumulated

mask from the final stage as the exclusion mask to show the
exclusion pattern of a action sequence. Each row of the matrix
is the mean mask over all the input videos of the corresponding
category. The value 0.0 of the square of each row indicates
that all the samples in the corresponding category (row)
choose to exclude the category the column represents. The
value 1.0 indicates that all the samples in the corresponding
category (row) choose not to exclude the category the column
represents.

As can be seen from Fig.5, for most categories of the input
videos, they tend to exclude the categories 6. Prick Fork,
9. Put Sugar, 15. Put Tea Bag, 17. Open Dish Soap, 18.
Close Dish Soap, 21. Flip Sponge, 23. Squeeze Sponge, 36.
Unfold Glasses and 38. Open Wallet, which means that these
categories are very similar to other categories, especially at
the early stages. If we refer back to Fig.4, we can clearly see
that most of the category are wrongly recognized as 9, 15,
17 and 38, which shows that the agent has correctly learned
the interference categories that should be excluded for better
classification decision. If further checking the squares on the
diagonal of the matrix, we can see that most of the values
are 1.0, which means that the agent learns not to exclude
the positive categories. Besides, the exclusion patterns of the
training and testing samples are very similar to each other.
This similarity shows that the exclusion patterns learned from
the training data are well generalized to the testing data. This
shows good generalization capability of our proposed agent
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model for category exclusion learning.

Ablation Study for Agent State
During the progression of category exclusion, besides the
classification probability dn and the generated mask mn−1,
the agent also need information from observation hn to
make decisions. There are two sources of information to be
considered, the feature of the data directly from the sequence,
and the hidden data accumulated in LSTM classifier. In this
section, we conduct experiments to evaluate the efficiency
of these two sources of information on the FPHA dataset.
To see the contribution of the raw data from local window,
and the hidden representation from LSTM in exclusion mask
estimation, the dimension of their embedded version are set
to the same, e.g., 128. There are four different experiments
conducted. Here, we provide the early recognition accuracy
of the proposed method (w/ Exc.) without observation hn

(None), with only the hidden feature from the classifier (Hid),
with only the feature from local temporal window wn (Local),
and with both the hidden feature and the feature from local
window (Hid+Local). The results are shown in TableII. The
highest accuracies are emboldened.
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Fig. 6. The learned weights distribution of Agent’s input layer on input
embeddings. The color bar under the x-axis marks the range of each related
feature. For example the orange bar marks the range of the embedded local
pose feature.

Phase #Sample Time (s)

Training 600 206.57
Testing 575 181.12

TABLE III
Epoch Time Evaluation of the Agent in Training and Testing Phase on

FHPA

As can be seen, without the information from sequence ob-
servation h, the proposed method cannot achieve the accuracy
as good as the baseline (w/o Exc.). This shows that there are
limited informative patterns from the classification probability
d for category exclusion. With only the hidden feature from the
classifier, the proposed method can achieve better performance
than the baseline at the early stages. However, the accuracy
drops after observation ratio 60%. We consider the reason is

that the hidden feature is learned by positive label supervision.
The information bear in the hidden feature is to distinguish the
positive category from all negative categories. While here the
observation hn is designed to search for interfering negative
categories, which is eliminative induction. It is not easy to
extract useful information from the hidden feature for the
exclusion task. With only the feature from local temporal
window, we can see there is great improvement over the
baseline. Although the hidden feature comes from the raw
data, the information of the diverse negative categories is
suppressed in hidden feature. The local feature itself is the
raw data, and we can see the agent learns good patterns from
it. In the case of Hid+Local, we can observe that with the
help of Hid, the improvement is limited. The comparison
shows that 1) learning classification and learning category
exclusion are two tasks that are complementary; 2) During
classification training, there is some information thrown away
which is helpful for the exclusion task. Here the exclusion task
collects this information and help achieve better classification
performance.

We further check the contribution of these two sources
by visualizing the parameters of the agent’s input layer. This
experiment is conducted on the FPHA dataset. The parameters
that related to the embedded h in the input layer is a De ×Dh

matrix Wih , where De is the dimensionality of the embedded
h, and Dh is the dimensionality of the hidden feature in
LSTM classifier. Fig.6 shows the contribution of the two parts,
Hid and Local, of the embedded h to the exclusion mask
generation. This curve is recorded in a one-dimensional vector
a ∈ RDe obtained by,

a =
1

Dh

Dh∑
j=1

1
Z j

p
(
W

j
ih

)
, (8)

in which W
j
ih

denotes the j-th column of Wih . p(·) is
the element-wise square function. Z j is a normalization
factor for each column vector of Wih . Z j here is the
maximum of W

j
ih

. From Fig.6 we can see that the weights
corresponding to local poses embedding feature bear most
of the high weights, while the weights of the hidden feature
part are less than the weights of local poses feature. We
further calculate the mean weights of each part, and the
results are 3.5 ∗ 10−3 and 1.9 ∗ 10−3 respectively. The
results indicate that the local poses feature contributes the
most to the generation of the exclusion mask, which further
verify the conclusion we made in the early part of this section.

Complexity and Time Cost
We follow the definition of the Floating Point Operations
(FLOPs) in the appendix of [62] to estimate the computing
complexity of our model. We denote the dimension of input
feature as Ni , the number of layers as Nl , the number of hidden
neural as Nn and the number of category as Nc . Therefore the
FLOPs of the RNN input layer is (2Ni + 1)Nn . The FLOPs
of the hidden layers is NnNl + [(2Nn + 1)Nn](2Nl − 1). The
FLOPs of the output layer is (2Nn + 1)Nc . In the case of
the FPHA experiment, Ni is 224, Nl is 2, Nn is 100 and
Nc is 45. Hence the FLOPs the agent takes is around 114K.
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Fig. 7. Accuracy Difference and Reward Curve of FPHA. The accuracy difference is defined as the recognition accuracy difference between early recognition
before and after category exclusion. The training accuracy and reward curves are drawn sample by sample, and we denote the index of the x-axis as iteration.
The testing accuracy curve is drawn epoch by epoch, and therefore we set the index of the x-axis as epoch.

Observation Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% AUC

w/o Exc. 45.91 54.26 61.39 63.30 65.74 69.22 70.61 72.17 73.39 74.43 64.11
w/ Exc.-1.0 52.00 59.65 64.52 65.91 67.65 70.43 72.00 73.57 74.26 74.96 66.66

η = 0.1 24.52 27.13 28.70 28.70 29.04 29.74 29.22 29.22 29.22 29.39 28.37
η = 0.3 48.52 51.65 54.26 56.17 58.09 58.78 59.30 60.52 61.04 61.57 56.34
η = 0.5 53.39 60.35 65.22 67.30 68.87 71.13 72.00 74.09 74.61 75.13 67.43
η = 0.7 51.13 58.43 63.48 65.04 66.09 69.22 70.78 72.52 73.22 73.74 65.54
η = 0.9 53.04 60.17 65.22 66.78 68.52 71.13 72.35 73.91 74.43 75.13 67.20
η = 1.1 51.83 58.96 64.17 65.57 67.48 70.43 71.65 73.22 73.74 74.43 66.24
η = 1.3 53.57 59.83 64.87 66.26 68.00 70.61 72.00 73.22 74.09 74.61 66.89
η = 1.5 50.26 57.22 63.30 64.52 66.43 69.74 70.96 72.52 73.39 74.78 65.40
η = 1.7 51.65 58.43 64.35 65.91 68.00 70.43 71.83 73.22 73.74 74.43 66.33
η = 1.9 51.13 58.09 64.00 65.22 67.13 70.43 71.48 73.04 73.91 74.43 66.00

η = 2.1 51.65 58.43 64.17 65.39 67.13 70.26 71.65 73.39 74.26 74.78 66.25
η = 3.1 45.91 54.09 61.39 62.96 65.57 68.70 70.09 71.83 73.04 73.91 63.82
η = 4.1 46.61 54.43 61.04 62.61 65.04 68.35 69.74 71.48 72.70 73.74 63.65
η = 5.1 47.48 55.65 62.26 64.52 66.96 69.91 70.78 72.87 73.57 74.43 64.96

TABLE IV
Parameter Sensitivity Analysis of the Positive Reward η on FPHA (%).

We further evaluate the training time and testing time of the
proposed agent model and the results are shown in Table III.
The experiment is conducted on an Intel Xeon Platinum
8255C CPU with 2.50GHz clock frequency and a NVIDIA
Tesla V100 GPU.

Depth 1 2 3 4 5 w/o Exc.

AUC 63.72 66.66 66.20 63.84 63.20 64.11
TABLE V

Impact of Model Depth on Model Performance - FHPA (%)

Neuron 50 100 150 200 250 w/o Exc.

AUC 66.13 66.66 65.14 65.74 64.11 64.11
TABLE VI

Impact of the Number of Neuron on Model Performance - FHPA (%)

We further conduct experiments of model capacity
sensitivity on the FHPA dataset and the results are shown
in Table V and Table VI. In these two tables, the criterion

Area under Curve (AUC) is reported for different network
parameter settings, and the AUC of the baseline model,
namely the classifier without category exclusion (w/o Exc.),
is also reported. We first fix the number of neuron in each
layer as 100 and vary the depth of the agent from 1 to 5. As
can be seen from Table V, when the model is too deep (with
more than 4 layers) or too shallow (with only one layer), the
agent cannot either well generalize or well learn the category
exclusion strategy. We then fix the number of model depth as
2 and vary the number of neuron in each layer from 50 to
250. As can be seen in Table VI, when there are too many
neurons in each layer, for example 250 in this experiment,
the agent cannot well generalize the exclusion strategy due to
over-fitting.

Convergence Analysis
We record during training phase the classification accuracy
difference before and after the category exclusion on the
training and testing data, as well as the reward of training
data, and draw the curve in Fig.7. From Fig.7 we can see
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Fig. 8. Visualization of the generated mask and the recognition before and after exclusion. Each visualization of a sample consists of three matrices. The size
of each matrix is 20 by 60, namely N ∗C . The numbers on the vertical direction of each matrix indicate the stage indices, and the ones on the horizontal
direction indicate the category indices. The matrix in the first row of each visualization sample shows the prediction outputs before exclusion. The colors in
the matrix indicate the value of the prediction probability from low (purple) to high (yellow). The white lines in the matrix indicate the prediction decision
based on maximum a posteriori (MAP). In each row of the visualization matrix, the square with the highest value is marked as white. The matrix in the
second row of each individual visualization is the probability outputs after exclusion with the marked prediction decision. The masks are shown in the third
row. The black lines in the mask indicate that the related categories are excluded. The white lines in the mask indicate that the related category is kept for
MAP prediction. The light blue line in the mask indicates the positive category.

that the agent tends to converge after 500 epochs. After
convergence, the average difference of recognition accuracy is
above 0, which means that the average recognition accuracy
after exclusion is better than the accuracy before exclusion.
The similar trend happens for the testing samples.

One of the important indicators in Reinforcement Learning
is the reward, as defined in Eq.(5). Here the reward we draw
is defined as

∑
n,c rcn/(NC). As can be seen from Fig.7,

the reward increases gradually during training, and tend to
be stable after 400,000 iterations, which indicates that the
training based on Reinforcement Learning converges.

Parameter Sensitivity Analysis
The positive reward η, as defined in Eq.(5), is a critical
parameter balancing the encouragement and punishment of
the agent’s behavior. In this section, we evaluate the sensitivity
of our proposed method to this parameter η. The results are
recorded in TableIV. In this table, the rows with the overall
accuracies lower than or close to the baseline (w/o Exc.) are

marked by red. We set the value of η in two ranges, from 0
to 2 (step set as 0.2) and higher than 2.0 (step set as 1). As
can be seen from TableIV, in the first range, when η is set
lower than 0.5, the agent cannot learn the exclusion patterns
well, and hence achieves worse performance than the baseline
(w/o Exc.). When η is larger than 2.1, the encouragement of
exclusion of the negative categories is much stronger than that
of maintaining the positive category to learn the exclusion
properly. From TableIV we can see that when 0.5 < η < 2,
the agent has a good balance between maintaining the positive
category and excluding the interfering negative categories,
and hence performs better than the baseline.

Visualization
In this part, we visualize the classification probability outputs
of the classifier, the prediction decision of maximum a
posteriori (MAP), and the exclusion mask in our model.
Fig.8 shows the visualizations of six samples from the
NTU-RGBD (CS). The detailed explanation of the figure is
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shown in the figure caption. As can be seen from the figure,
the generated mask helps exclude the interfering negative
categories, and helps the classifier search the correct category
for prediction. Fig.8 also shows that the learnt agent excludes
interfering negative categories at the very early observation
ratio. Let’s take the (c) Jump Up for example. As can be
seen from the visualization, the action 27-Jump Up and
the action 26-Hopping (one foot jumping) are very wrongly
distinguished by the classifier, especially at the late stages.
However, at the early stage, the agent learns to exclude the
category 26-Hopping (one foot jumping), and therefore avoid
confusion at the late stages.

Except the samples (e) and ( f ), all other illustrations are
from different categories. As can be seen from visualizations
(a) to (e), samples from different categories generate different
exclusion patterns. Even samples from the same category,
namely sample (e) and ( f ), do not share exactly the same
exclusion pattern. The exclusion mask is generated differently
from sample to sample. Also, from samples like (c) and ( f ),
we see that two samples from different categories may share
the same exclusion pattern.

V. Conclusion
In this paper, we propose a new approach to the task of early

action recognition with a novel strategy: learning category
exclusion. Different from the existing methods considering
early action recognition as sequential classification problems,
we introduce the idea of eliminative induction in this task,
which utilizes the complementary information to that utilized
in sequential classification, and hence category exclusion helps
achieve good performance. We train an agent to exclude neg-
ative interfering categories by reinforcement learning. During
action execution, the agent cooperates with the pre-trained
classifier and generates masks to exclude interfering categories
based on the partial input sequence it observes. The experi-
mental studies show some insights of the proposed framework
for category exclusion. Performance evaluations at different
observation ratios on three benchmark datasets demonstrate
the effectiveness and consistency of our proposed model on
early action recognition task.

References
[1] J. Hu, W. Zheng, L. Ma, G. Wang, J. Lai. “Real-time

RGB-D activity prediction by soft regression,” in ECCV,
2016.

[2] Y. Kong, Y. Fu. “Max-margin action prediction machine,”
in TPAMI, 2016.

[3] Y. Kong, Z. Tao, Y. Fu. “Deep sequential context networks
for action prediction,” in CVPR, 2017.

[4] M. Ryoo. “Human activity prediction: Early recognition
of ongoing activities from streaming videos,” in ICCV,
2011.

[5] A. Shahroudy, J. Liu, T. Ng, G. Wang. “NTU RGB+ D:
A large scale dataset for 3D human activity analysis,” in
CVPR, 2016.

[6] R. Williams. “Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning,” in
Machine learning, 1992.

[7] G. O, S. Yuan, S. Baek, T. Kim. “First-person hand
action benchmark with RGB-D videos and 3D hand pose
annotations,” in CVPR, 2018.

[8] K. Soomro, A. Zamir, M. Shah. “UCF101: A Dataset of
101 Human Actions Classes From Videos in The Wild,”
in CRCV-TR-12-01, 2012.

[9] J. Weng, C. Weng, J. Yuan, Z. Liu. “Discriminative spatio-
temporal pattern discovery for 3D action recognition,” in
TCSVT, 2018.

[10] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S.
Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev.
“The kinetics human action video dataset,” in arXiv
preprint arXiv:170506950, 2017.

[11] S. Hochreiter, J. Schmidhuber. “Long short-term mem-
ory,” in Neural computation, 1997.

[12] D. Kingma, J. Ba. “Adam: A method for stochastic
optimization,” in ICLR, 2014.

[13] J. Hu, W. Zheng, L. Ma, G. Wang, J. Lai, J. Zhang. “Early
Action Prediction by Soft Regression,” in TPAMI, 2018.

[14] S. Ma, L. Sigal, S. Sclaroff. “Learning activity progres-
sion in lstms for activity detection and early detection,” in
CVPR, 2016.

[15] Y. Kong, S. Gao, B. Sun, Y. Fu. “Action prediction from
videos via memorizing hard-to-predict samples,” in AAAI,
2018.

[16] Y. Kong, D. Kit, Y. Fu. “A discriminative model with
multiple temporal scales for action prediction,” in ECCV,
2014.

[17] T. Lan, T. Chen, S. Savarese. “A hierarchical representa-
tion for future action prediction,” in ECCV, 2014.

[18] J. Liu, A. Shahroudy, G. Wang, L. Duan, A. Kot. “SSNet:
scale selection network for online 3D action prediction,”
in CVPR, 2018.

[19] A. Fathi, G. Mori. “Action recognition by learning mid-
level motion features,” in CVPR, 2008.

[20] Z. Zhang, D. Tao. “Slow feature analysis for human
action recognition,” in TPAMI, 2012.

[21] M. Bregonzio, S. Gong, T. Xiang. “Recognising action
as clouds of space-time interest points.,” in CVPR, 2009.

[22] A. Klaser, M. Marszałek, C. Schmid. “A spatio-temporal
descriptor based on 3d-gradients,” in BMVC, 2008.

[23] P. Scovanner, S. Ali, M. Shah. “A 3-dimensional sift
descriptor and its application to action recognition,” in
ACM MM, 2007.

[24] H. Wang, A. Kläser, C. Schmid, L. Cheng-lin. “Action
Recognition by Dense Trajectories,” in CVPR, 2011.

[25] H. Wang, C. Schmid. “Action recognition with improved
trajectories,” in ICCV, 2013.

[26] D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri.
“Learning spatiotemporal features with 3d convolutional
networks,” in ICCV, 2015.

[27] J. Carreira, A. Zisserman. “Quo vadis, action recogni-
tion? a new model and the kinetics dataset,” in CVPR,
2017.

[28] K. Hara, H. Kataoka, Y. Satoh. “Learning spatio-
temporal features with 3D residual networks for action
recognition,” in ICCV, 2017.

[29] K. Hara, H. Kataoka, Y. Satoh. “Can spatiotemporal 3d

Authorized licensed use limited to: Harvard Library. Downloaded on March 30,2020 at 03:27:35 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.2976789, IEEE
Transactions on Circuits and Systems for Video Technology

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 13

cnns retrace the history of 2d cnns and imagenet?,” in
CVPR, 2018.

[30] C. Feichtenhofer, A. Pinz, A. Zisserman. “Convolutional
two-stream network fusion for video action recognition,”
in CVPR, 2016.

[31] K. Simonyan, A. Zisserman. “Two-stream convolutional
networks for action recognition in videos,” in NeurIPS,
2014.

[32] J. Weng, M. Liu, X. Jiang, J. Yuan. “Deformable pose
traversal convolution for 3d action and gesture recogni-
tion,” in ECCV, 2018.

[33] Z. Ren, J. Yuan, Z. Zhang. “Robust hand gesture
recognition based on finger-earth mover’s distance with
a commodity depth camera,” in ACM MM, 2011.

[34] J. Wang, Z. Liu, Y. Wu, J. Yuan. “Mining actionlet
ensemble for action recognition with depth cameras,” in
CVPR, 2012.

[35] J. Wang, Z. Liu, Y. Wu, J. Yuan. “Learning actionlet
ensemble for 3D human action recognition,” in TPAMI,
2013.

[36] H. Liang, J. Yuan, D. Thalmann, N. Thalmann. “Ar in
hand: Egocentric palm pose tracking and gesture recog-
nition for augmented reality applications,” in ACM MM,
2015.

[37] Z. Ren, J. Yuan, J. Meng, Z. Zhang. “Robust part-based
hand gesture recognition using kinect sensor,” in TMM,
2013.

[38] J. Weng, C. Weng, J. Yuan. “Spatio-temporal naive-
bayes nearest-neighbor (st-nbnn) for skeleton-based action
recognition,” in CVPR, 2017.

[39] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, R. Bajcsy.
“Sequence of the most informative joints (smij): A new
representation for human skeletal action recognition,” in
JVCI, 2014.

[40] G. Yu, Z. Liu, J. Yuan. “Discriminative orderlet mining
for real-time recognition of human-object interaction,” in
ACCV, 2014.

[41] R. Vemulapalli, R. Chellapa. “Rolling rotations for
recognizing human actions from 3d skeletal data,” in
CVPR, 2016.

[42] G. O, T. Kim. “Transition forests: Learning discrim-
inative temporal transitions for action recognition and
detection,” in CVPR, 2017.

[43] P. Wang, C. Yuan, W. Hu, B. Li, Y. Zhang. “Graph
based skeleton motion representation and similarity mea-
surement for action recognition,” in ECCV, 2016.

[44] J. Liu, A. Shahroudy, D. Xu, G. Wang. “Spatio-temporal
lstm with trust gates for 3d human action recognition,” in
ECCV, 2016.

[45] J. Liu, G. Wang, P. Hu, L. Duan, A. Kot. “Global
context-aware attention LSTM networks for 3D action
recognition,” in CVPR, 2017.

[46] M. Liu, J. Yuan. “Recognizing human actions as the
evolution of pose estimation maps,” in CVPR, 2018.

[47] H. Wang, L. Wang. “Modeling temporal dynamics
and spatial configurations of actions using two-stream
recurrent neural networks,” in CVPR, 2017.

[48] S. Song, C. Lan, J. Xing, W. Zeng, J. Liu. “An end-

to-end spatio-temporal attention model for human action
recognition from skeleton data,” in Thirty-first AAAI
conference on artificial intelligence, 2017.

[49] I. Lee, D. Kim, S. Kang, S. Lee. “Ensemble deep learn-
ing for skeleton-based action recognition using temporal
sliding lstm networks,” in ICCV, 2017.

[50] W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, X. Xie.
“Co-occurrence feature learning for skeleton based action
recognition using regularized deep LSTM networks,” in
AAAI, 2016.

[51] Y. Li, C. Lan, J. Xing, W. Zeng, C. Yuan, J. Liu.
“Online human action detection using joint classification-
regression recurrent neural networks,” in ECCV, 2016.

[52] W. Li, L. Wen, M. Chang, S. Namlim, S. Lyu. “Adaptive
RNN tree for large-scale human action recognition,” in
ICCV, 2017.

[53] Q. Ke, M. Bennamoun, S. An, F. Sohel, F. Boussaid.
“A new representation of skeleton sequences for 3d action
recognition,” in CVPR, 2017.

[54] P. Wang, Z. Li, Y. Hou, W. Li. “Action recognition
based on joint trajectory maps using convolutional neural
networks,” in ACM MM, 2016.

[55] Y. Du, W. Wang, L. Wang. “Hierarchical recurrent neural
network for skeleton based action recognition,” in CVPR,
2015.

[56] C. Li, Z. Cui, W. Zheng, C. Xu, J. Yang. “Spatio-
temporal graph convolution for skeleton based action
recognition,” in AAAI, 2018.

[57] D. Guo, S. Wang, Q. Tian, M. Wang. “Dense temporal
convolution network for sign language translation,” in
IJCAI, 2019.

[58] C. Lea, M. Flynn, R. Vidal, A. Reiter, G. Hager. “Tem-
poral convolutional networks for action segmentation and
detection,” in CVPR, 2017.

[59] C. Lea, R. Vidal, A. Reiter, G. Hager. “Temporal
convolutional networks: A unified approach to action
segmentation,” in ECCV, 2016.

[60] P. Lei, S. Todorovic. “Temporal deformable residual
networks for action segmentation in videos,” in CVPR,
2018.

[61] D. Guo, W. Zhou, H. Li, M. Wang. “Hierarchical lstm
for sign language translation,” in AAAI, 2018.

[62] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz.
“Pruning convolutional neural networks for resource effi-
cient inference,” in ICLR, 2017.

[63] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, Q. Tian.
“Actional-Structural Graph Convolutional Networks for
Skeleton-based Action Recognition,” in CVPR, 2019.

[64] S. Yan, Y. Xiong, D. Lin. “Spatial temporal graph con-
volutional networks for skeleton-based action recognition,”
in AAAI, 2018.

[65] D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri.
“Learning spatiotemporal features with 3d convolutional
networks,” in ICCV, 2015.

[66] D. Tran, H. Wang, L. Torresani, J. Ray, Y. Lecun, M.
Paluri. “A closer look at spatiotemporal convolutions for
action recognition,” in CVPR, 2018.

[67] Z. Qiu, T. Yao, T. Mei. “Learning spatio-temporal

Authorized licensed use limited to: Harvard Library. Downloaded on March 30,2020 at 03:27:35 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.2976789, IEEE
Transactions on Circuits and Systems for Video Technology

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 14

representation with pseudo-3d residual networks,” in
ICCV, 2017.

[68] K. Hara, H. Kataoka, Y. Satoh. “Can spatiotemporal 3d
cnns retrace the history of 2d cnns and imagenet?,” in
CVPR, 2018.

Junwu Weng (S’17) received his M.Eng. degree
from South China University of Technology (SCUT),
Guangdong, China, in 2015. Before that he gradu-
ated from the Talented Student Program of School
of Electronics & Information, SCUT. He is currently
pursuing the Ph.D. degree at the School of Electrical
and Electronics Engineering, Nanyang Technological
University, Singapore. His current research interests
include computer vision, machine learning, as well
as action and gesture analysis.

Xudong Jiang (M’02-SM’06) received the B.Eng.
and M.Eng. degrees from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, and the Ph.D. degree from Hel-
mut Schmidt University, Hamburg, Germany. After
several years’ teaching as a Lecturer in UESTC,
he was with the Institute for Infocomm Research,
A*STAR, Singapore, as a Lead Scientist, and the
Head of the Biometrics Laboratory from 1998 to
2004, where he developed a system that achieved
the most efficiency and the second most accuracy

at the International Fingerprint Verification Competition in 2000. He joined
Nanyang Technological University (NTU), Singapore, as a Faculty Member, in
2004, where he has also served as the Director of the Centre for Information
Security from 2005 to 2011. He is currently a tenured Associate Professor with
the School of EEE, NTU. He holds 7 patents and has authored over 150 papers
with 39 papers in the IEEE journals, including 11 papers in IEEE TIP and 6
papers in IEEE TPAMI. His research interests include signal/image processing,
pattern recognition, computer vision, machine learning, and biometrics. He
has been an IFS Technical Committee Member of the IEEE Signal Processing
Society, and he has served as Associate Editors for IEEE TIP, IEEE SPL, and
Editor-in-Chief for IET Biometrics.

Wei-Long Zheng (S’14-M’19) received the bach-
elor’s degree in information engineering with the
Department of Electronic and Information Engi-
neering, South China University of Technology,
Guangzhou, China, in 2012. He received the Ph.D.
degree in computer science with the Department of
Computer Science and Engineering, Shanghai Jiao
Tong University, Shanghai, China, in 2018. He is
a research fellow in the Department of Neurology,
Massachusetts General Hospital, Harvard Medical
School, Boston, MA, USA. He received the IEEE

Transactions on Autonomous Mental Development Outstanding Paper Award
from IEEE Computational Intelligence Society in 2018. His research focuses
on affective computing, brain-computer interaction, machine learning and
pattern recognition.

Junsong Yuan (M’08-SM’14) is currently an Asso-
ciate Professor and Director of Visual Computing
Lab at Department of Computer Science and En-
gineering (CSE), State University of New York at
Buffalo, USA. Before that he was an Associate Pro-
fessor at Nanyang Technological University (NTU),
Singapore. He obtained his Ph.D. from Northwest-
ern University, M.Eng. from National University of
Singapore and B.Eng from the Special Program for
the Gifted Young of Huazhong University of Science
and Technology (HUST), China. His research inter-

ests include computer vision, pattern recognition, video analytics, gesture and
action analysis, large-scale visual search and mining. He received Best Paper
Award from IEEE Trans. on Multimedia, Nanyang Assistant Professorship
from NTU, and Outstanding EECS Ph.D. Thesis award from Northwestern
University. He is currently Senior Area Editor of Journal of Visual Commu-
nications and Image Representation (JVCI), Associate Editor of IEEE Trans.
on Image Processing (T-IP) and IEEE Trans. on Circuits and Systems for
Video Technology (T-CSVT), and served as Guest Editor of International
Journal of Computer Vision (IJCV). He is Program Co-Chair of IEEE Conf.
on Multimedia Expo (ICME’18) and Steering Committee Member of ICME
(2018-2019). He also served as Area Chair for CVPR, ICIP, ICPR, ACCV,
ACM MM, WACV etc. He is a Fellow of International Association of Pattern
Recognition (IAPR).

Authorized licensed use limited to: Harvard Library. Downloaded on March 30,2020 at 03:27:35 UTC from IEEE Xplore.  Restrictions apply. 


