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Discriminative Spatio-Temporal Pattern Discovery
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Abstract—Despite the recent success of 3D action recognition
using depth sensor, most existing works target how to improve
action recognition performance, rather than understanding how
different types of actions are performed. In this work we propose
to discover discriminative spatio-temporal patterns for 3D action
recognition. Discovering these patterns can not only help improve
the action recognition performance, but also help us under-
stand and differentiate between action categories. Our proposed
method takes the spatio-temporal structure of 3D action into
consideration and can discover essential spatio-temporal patterns
that play key roles in action recognition. Instead of relying an
end-to-end network to learn the 3D action representation and
perform classification, we simply present each 3D action as a
series of temporal stages composed by 3D poses. Then we rely
on nearest neighbor matching and bilinear classifiers to simulta-
neously identify both critical temporal stages and spatial joints
for each action class. Despite using raw action representation
and a linear classifier, experiments on five benchmark datasets
show that the proposed spatio-temporal Nave Bayes Mutual
Information maximization (ST-NBMIM) can achieve competitive
performance compared with the state-of-the-art methods that
use sophisticated end-to-end learning, and has the advantage of
finding discriminative spatio-temporal action patterns.

Index Terms—NBMIM, Spatio-temporal Pattern Discovery,
Discriminative Skeleton-based Action Recognition

I. INTRODUCTION

IN this decade, thanks to the availability of commodity
depth cameras and the contribution of pose extraction

method [1], skeleton-based action recognition has drawn
considerable attention in computer vision community. Deep-
learning-based methods [8], [51]–[53] in action recogntion
from RGB data have made great success recently, which
also inspire the works in 3D action recognition. The leading
methods for 3D action recognition so far are learning-based
classifiers including deep learning based methods [2]–[7],
which have shown promising results on benchmark datasets.

While learning-based methods have made significant
progress in 3D action recognition problem, non-parametric
models, which do not involve training or learning for parame-
ters, have not been well explored. Meanwhile, we have already
witnessed the success of NN-based model Naive-Bayes Mutual
Information Maximization (NBMIM) being applied to action
detection problem. Motivated by the success of NBMIM
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in action detection problem, we explore it for 3D actions
recognition.

The motivation of applying NBMIM [9] to 3D action recog-
nition is on the basis of the following three observations. (1)
Compared with RGB-based image or video analysis problem
which always faces millions or billions of pixels, skeletal data
only consists of tens of joints. We believe that compared with
sophisticated end-to-end model, a simple NN-based model can
still well handle such a lightweight problem; (2) Similar to
images that are the composition of local visual primitives,
actions can be represented as a set of temporal primitives,
as the temporal stage-descriptor we defined in Sec. III-A.
Therefore, it is possible to generalize NBNN [10] to 3D
action problem by applying the primitive-to-class distance to
recognize actions; (3) Considering that actions from different
action classes may share a great number of similar temporal
primitives, which are not helpful to action classification, we
can borrow the idea from NBMIM [9] to introduce negative
primitives into nearest neighbor matching thus boosting the
discriminative ability of temporal primitives.

Our Spatio-temporal Naive-Bayes Mutual Information Max-
imization is an extension of NBMIM. In our framework,
each 3D action is represented as a set of temporal stages
which are composed of 3D poses. Each 3D pose in a stage
is presented by a collection of spatial joints. Similar to
NBMIM, our ST-NBMIM also applies the summation of
temporal primitive mutual information with respect to action
classes to distinguish action instances. Moreover, ST-NBMIM
takes the spatio-temporal structure of action sequences into
consideration. Even though an action instance comprises a set
of temporal stages, not every temporal stage and the related
spatial joints are of equal importance in action recognition.
It is greatly important to discover the critical temporal stages
and spatial joints that matter for recognition. As illustrated
in Fig. 1, when performing right hand waving action, only
the right hand and arm (key joints) are activated. Meanwhile,
when observing the timing (key stage) at which the right
hand and arm raise up and move horizontally towards left,
we can conclude that waving right hand action is being
performed. Such a spatio-temporal pattern described by key
temporal stages and spatial joints is critical to identify action
classes. The discovery of such patterns not only can improve
recognition accuracy but also provides answers to the deeper
questions of what an action instance are composed of and why
it is recognized as a particular action class. We consider that
the visual interpretability [47], [48], [54] of model is also an
important topic in action recognition. To this end, we represent
the mutual information of temporal primitives as the mutual
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Fig. 1. Illustration of Key Stage, Joints, and Motion for the action of waving right hand action.

information matrix, which is the combination of the “mutual
information” of each spatial joint. Further, ST-NBMIM adopts
a bilinear classifier [11] to identify those key joints and stages
with discriminative “mutual information” and utilize these key
elements to classify the mutual information matrix of 3D
actions. This process is implemented by iteratively learning the
linear classification weight for both spatial joints and temporal
stages.

ST-NBMIM combines the strengths of non-parametric
model and parametric model by utilizing both the mutual
information of temporal stage w.r.t action class and bilinear
classifier [11]. Experiments show that with only a linear clas-
sifier, our proposed method achieves competitive performance
on four benchmark datasets compared with the state-of-the-art
models. We also witness the potential of ST-NBMIM on large
scale dataset. Furthermore, ST-NBMIM bears the ability to
capture the essential spatio-temporal patterns for each action
class, which play key roles in recognizing actions and provide
physical interpretations of action behavior.

II. RELATED WORK

In skeleton-based action recognition, the input is a sequence
of 3D poses that records the performing of a certain ac-
tion, and the output is the corresponding action label that
sequence belongs to. In these years, skeleton-based action
recognition problem has attracted a lot of attention and many
learning-based methods [2]–[8] have been proposed. Due to
the considerable amount of work in this area, we only focus
our review on the spatio-temporal modeling of skeleton-based
action recognition.

The modeling of spatial domain can be divided into two
categories, part-based model and sub-pose model. To date, the
spatial domain modeling is mainly driven by the fact that
an action is usually only characterized by the interactions
or combinations of a subset of skeleton joints [4]. In the
part-based model, the joints of a skeleton are partitioned
into several groups, and in each group the joints are skeletal
neighbors of each other. In [5] a part-aware LSTM is proposed
to construct the relationship between body parts. Similarly, in
HBRNN [2], skeletons are decomposed into five parts, two
arms, two legs, and one torso, and a hierarchical recurrent
neural network is built to model the relationship among
these parts. In sub-pose model, the focus is mainly on the
informative joints or their interactions. In SMIJ [12], the most
informative joints are selected simply based on measures such

as mean or variance of joint angle trajectories. The sequence
of these informative joints is then used as the representation
of actions. In Orderlet [13], interactions between joints are
modeled by a few comparisons of joints’ primitive feature,
and in action recognition only a subset of joints is involved.
On the temporal domain, temporal pyramid matching [14],
[15], dynamic time warping [16], and graphical models [17],
[18] are the commonly used methods for temporal modeling.
While in [19], sequential pattern mining method is used to
model temporal structures of a set of key poses.

Besides spatial modeling or temporal modeling, we also see
efforts on spatio-temporal modeling. Wang et al. [55] apply
data mining techniques to discover co-occurring distinctive
spatial body-part structures and temporal pose evolutions. In
classification, bag-of-words model based on the mined spatial-
part-sets and temporal-part-sets is utilized for action repre-
sentation. Compared to [55], our proposed method focuses
on discriminative and class-related individual spatial joints
and temporal stages discovery. For a certain action category,
the classification decision is mainly determined by the data
from the discovered discriminative joints and stages. In [56],
a hierarchical model is proposed to recognize pose-based,
composable and concurrent actions and activities. Based on
the learned motions poselets and actionlets dictionaries, the
hierarchical model can provide spatio-temporal annotations of
complex actions. The annotation can tell when the related
body parts are activated for which atomic action, but these
annotations may not be discriminative in classification. While
in ST-NBMIM, key joints and key stages discovered in ST-
NBMIM are discriminative for classification. In [6], a LSTM
model is extended to spatio-temporal domain to analyze skele-
tons. In Spatio-Temporal Naive-Bayes Nearest Neighbor ST-
NBNN [20], bilinear classifier is utilized to discover the spatio-
temporal structure of 3D action. Another track on spatio-
temporal modeling is the CNN-based 3D action recognition
model [41], [49], [50]. In these models, a 3D action sequence
is first visualized as an image. The pixels of these image
samples are directly or indirectly related to the joint coor-
dinates, which means the spatio-temporal information of a 3D
sequence is re-organized as the combination of pixels. A fur-
ther CNN-model is applied to extract features and predict the
label of actions based on the input image samples. The CNN
model in these works plays the role of implicitly extracting
spatio-temporal information from 3D sequences. Compared
with these CNN-based methods, the spatio-temporal modeling
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of ST-NBMIM is more explicit, and spatio-temporal patterns
discovered by ST-NBMIM is physically interpretable.

Our ST-NBMIM is an extension of ST-NBNN [20]. In
this work, we introduce the idea of mutual information into
ST-NBNN. The involvement of negative samples can help
boost the discriminative ability of action representation. The
idea of applying mutual information calculation in NBNN
framework was first proposed in [9], in which NBNN was
re-designed as Naive-Bayes based Mutual Information Max-
imization (NBMIM) to solve action detection problem. One
interesting property of NBMIM is that negative samples
are involved in nearest neighbor matching to improve the
discriminative ability of descriptors. NBMIM is a nearest-
neighbor-based (NN-based) method since the calculation of
mutual information in NBMIM relies on the nearest neigh-
bor search. Even though NN-based methods are simple and
non-parametric, their successes in image classification and
action detection prove the effectiveness of these approaches.
Recently, the combination of NBNN and CNN [21], as well
as the effort to speed up NN search [22], revives the return of
NN-based methods in computer vision.

III. PROPOSED METHOD

In this section, we introduce how the involvement of mu-
tual information helps to improve the discriminative ability
of descriptors, and how the proposed method, ST-NBMIM,
predicts actions. The overview of our method is illustrated in
Fig. 2. We first introduce how to represent a 3D sequence of
actions, which includes single person action and two-person
interactive action (Sec. III-A). Then NBMIM [9] is used as
a basic framework to predict skeleton-based action instances
(Sec. III-B). Finally, the learning of spatial and temporal
weights is introduced to discover key poses and spatial joints
for 3D action recognition (Sec. III-C).

A. Representation for 3D Actions

Single-Person Action
In skeleton-based action recognition, a 3D action instance
is regarded as a sequence of 3D poses. Different actions
performed by different subjects may have different action dura-
tion. In our proposed method, to provide a unified presentation,
we partition each action into N temporal windows of equal
length. Each temporal window is called temporal stage, and it
is represented by the 3D poses in its corresponding window.
Assuming each 3D pose has J joints for its skeleton, for a
temporal stage descriptor x, the 3D pose in its jth frame
is denoted as pj ∈ R3J , and the related velocity of that
pose is denoted as vj ∈ R3J . More specifically, pj is the
concatenation of 3D coordinates (x, y, z) of J joints of the
pose in jth frame, and vj is the difference between two pose
features from consecutive frames, frame j and frame j + 1,
namely vj = pj+1−pj . For vj from the last frame, we assume
that the pose does not move, which means that vj = 0. Then
the pose part xp and velocity part xv of x is defined as below,

xp = [(p1)
ᵀ
, ... , (pl)

ᵀ
]
ᵀ

xv = [(v1)
ᵀ
, ... , (vl)

ᵀ
]
ᵀ (1)

We follow the idea in [23] to also normalize xp and xv . A
temporal stage descriptor x of l frames is then represented as:

x = [(xp)
ᵀ
, (xv)

ᵀ
]
ᵀ (2)

Based on the above notation, a 3D single person action video
is described by its N stages-descriptors V = {xi}Ni=1.

Two-Person Interaction
The description of two person interactive action is similar to
the one of single person action. We partition each action into
N temporal windows of equal length. Each stage includes
the interactive action of two persons in a short temporal
range. Inspired by the work in [24], we notice that the
relative position between joints from two different persons
is much more informative in interaction recognition than the
individual position. On the basis of this idea, we use the
difference between stages-descriptors of person A and person
B involved in an interactive action, namely xa and xb, as the
interaction representation. The delta descriptor is defined as,

xδ = abs(xa − xb) (3)

where abs(·) denotes the element-wise absolute operation for
the input descriptor. This absolute operation can well handle
the problem that we do not bear any information about which
person is an “active” actor and which one is an “inactive”
actor. Therefore finally, a 3D interaction video is described by
its N delta stage-descriptors V = {xi

δ}Ni=1.

B. Naive-Bayes Mutual Information Maximization
Given a query action video Vq = {xi}Ni=1, the goal is

to find which class c ∈ {1, 2, ..., C} the video Vq belongs
to. Naive-Bayes Mutual Information Maximization (NBMIM)
evaluates the mutual information I between the query video
and a specific class c to identify the action label:

c∗ = argmax
c

I(Vq; c) = argmax
c

log
p(Vq|c)
p(Vq)

(4)

With the Naive-Bayes assumption (the stage-descriptors are
independent of each other), Eq. 4 can be written as Eq. 5

c∗ = argmax
c

log
p(Vq|c)
p(Vq)

= argmax
c

log

N∏
i=1

p(xi|c)
p(xi)

= argmax
c

N∑
i=1

log
p(xi|c)
p(xi)

= argmax
c

N∑
i=1

I(xi; c) (5)

where I(xi; c) is the mutual information between the ith stage-
descriptor and the class c, and with the prior p(c) = 1/C it
can be derived as

I(xi; c) = log
C

1 + p(xi|c̄)
p(xi|c) (C − 1)

(6)

where c̄ denotes the negative class of c, that is, all the classes
except c.

Based on the analysis of [9], the ratio between p(xi|c̄) and
p(xi|c) can be estimated according to the distance between x
and the nearest neighbor of x in class c and c̄,

p(xi|c̄)
p(xi|c)

≈ γcexp−
1

2δ2
(‖xi−NNc̄(x

i)‖2−‖xi−NNc(x
i)‖2

) (7)
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Fig. 2. Overview of ST-NBMIM. 1) A 3D action sequence is uniformly divided into N stages, which is predefined, and is represented by a set of stage-
descriptors (orange query points); 2) Distances of stage-descriptors to action class sets (blue, green and red), namely distance descriptor, are calculated by
NN search; 3) Mutual information are estimated by calculating the difference between positive distance descriptor and the nearest negative distance descriptor
to generate mutual information descriptors; 4) Mutual information descriptors are gathered in temporal order to generate class-related mutual information
matrices (marked by class-related dashed rectangular boxes); 4) Weights on the spatial (left side of the matrix) and the temporal (bottom of the matrix) domain
are learned to discover key factors of actions and predict action labels

where γc = Nc/Nc̄, in which Nc is the number of stage-
descriptor from class c and Nc̄ is the number of stage-
descriptor from negative class c̄. δ is the kernel bandwidth in
density estimation. NNc(x) and NNc̄(x) indicate the nearest
neighbors of the query descriptor x in positive class c and
negative class c̄, respectively.

Based on Eq. 6 and Eq. 7, we can conclude that
I(xi; c) ∝ ‖xi −NNc̄(x

i)‖2 − ‖xi −NNc(x
i)‖2, and we

then simplify Eq. 5 as

c∗ = argmax
c

N∑
i=1

(‖xi −NNc̄(x
i)‖2 − ‖xi −NNc(x

i)‖2)

= argmax
c

N∑
i=1

Ĩ(xi; c) (8)

where Ĩ(xi; c) is the estimated mutual information between
stage-descriptor xi and class c.

For a query 3D action Vq = {xi}Ni=1, each of its stage-
descriptor will match against C classes separately by finding
the best matched temporal stage, i.e., nearest neighbor, in that
class. Note that different action classes may share similar
temporal stages, these similar stage-descriptors xi are not
discriminative. For those discriminative ones, the differences
between their distances to the positive class and negative
classes are large. Eq. 8 helps suppress the similar temporal
stages among C classes by applying difference operation
between negative and positive nearest neighbor distances.
The larger the difference between the negative and positive
distances, the stronger the temporal stage will vote for that
class c. As Vq has in total N temporal stages, the final decision
is the summation (average) over all of the N suppressed votes
towards to C classes, as described in Eq. 8.

C. Spatio-Temporal NBMIM

When performing a specific action, often only a subset of
joints are activated, and for actions from different classes the
activated joints are different. Meanwhile, only those joints
with high mutual information, as estimated in Eq. 8, bears
strong classification ability. Based on this observation, we
can only select those spatial joints with high mutual infor-
mation and ignore the ones that are not informative. On
the temporal domain the situation is similar. Among a set
of temporal stages, not every stage is of equal importance
neither. Depending on the action class, a certain temporal stage
can be more discriminative than others for classification. As
shown in Fig. 2, the stage-descriptor (shadowed orange query
square) of stage i bears higher mutual information and is more
discriminative than both the beginning stage and the ending
stage.

To simultaneously identify informative spatial joints and
temporal stages, bilinear classifier [11] is used to mine
saptio-temporal patterns in the framework of NBMIM.

Mutual Information Matrix
Although in Eq. 5 we assume that the stages are independent
of each other (Naive Bayes assumption), they in fact depend
on each other in a certain spatio-temporal structure. Hence,
to discover the spatio-temporal structure of 3D actions, we
first represent a 3D action instance from a set V = {xi}Ni=1

as a matrix. For a given video sample with N stages, its
spatio-temporal matrix is defined as

X = [x1, ... ,xN ] (9)

Stage-descriptors of an action instance are re-organized
column by column following the temporal order. Then we
define the nearest neighbor matrix of X in c as XNN

c =



5

[NNc(x
1), ... , NNc(x

N )], and the squared distance matrix
to class c is defined as

Xc = (X −XNN
c )� (X −XNN

c ) (10)

where � is an element-wise product. Xc is regarded as a
representation of X for class c, and it is a combination of
element-wise stage-to-class distances of the testing sample.
Similarly, if we regard class c as the positive class, then the
negative squared distance matrix is Xc̄ = (X−XNN

c̄ )�(X−
XNN

c̄ ). Based on the definition above, the mutual information
matrix is defined as

XI
c = Xc̄ −Xc (11)

Summation of all the elements in XI
c is equivalent to the∑N

i=1 Ĩ(x
i; c) in Eq. 8. The mutual information matrix XI

c , as
illustrated in Fig. 2, is the representation of the action instance
V in class c.

Since the summation of elements in XI
c determines the

final classification decision, as shown in Eq. 8, each element
contributes equally to the recognition task. However, only
the discriminative elements have great impacts to the final
decision and therefore this NBMIM framework, Eq. 8, should
be parameterized to emphasize those discriminative ones. Let’s
simply vectorize XI

c as χI
c , and the NBMIM decision function

Eq. 8 is then redefined as c∗ = argmin
c

wᵀχI
c , where the

weight w can be learned by linear SVM. However, since the
mutual information matrix XI

c is a large matrix, there will be a
large number of weight parameters that need to be determined.
Learning weights by linear SVM is not only time-consuming
but also has the risk of over-fitting. Therefore in our work, we
leverage bilinear classifier [11] to solve the weight learning
problem.

With the mutual information matrix XI
c of a query matrix

X , the classification score is then determined by a bilinear
function fc(·), which is defined as

fc(X
I
c ) = (us

c)
ᵀ XI

c u
t
c (12)

where us
c ∈ RM and ut

c ∈ RN are the spatial and temporal
weights of action class c. As a result, the classification
becomes

c∗ = argmin
c

fc(X
I
c ) (13)

As can be seen from Eq. 12, the proposed method provides
weights for both temporal stages and spatial joints. After a
rearrangement, Eq. 13 can be represented as,

c∗ = argmin
c

N∑
i=1

ut
c(i) ‖Ĩ(xi; c)

ᵀ√
us
c‖

2
(14)

where
√
· is an element-wise square-root of a vector. As we

can see, NBMIM is a special case of ST-NBMIM. When us
c

and ut
c are assigned to 1, Eq. 14 becomes NBMIM in Eq. 8.

With the break of Naive-Bayes rule, ST-NBMIM becomes a
generalization of NBMIM. We introduce the spatio-temporal
structure of 3D action into our framework to break the
assumption of stage independence. And the key joints and
stages can be discovered by the learned weights us

c and ut
c.

Spatial and Temporal Weight Learning
For the learning of us

c and ut
c, we introduce the objective

function that is similar to tensor SVM. Following the
learning strategy of [25], we adopt the one-vs.-all strategy to
classify actions. With empirical loss, the objective function
of spatio-temporal weight learning is defined as

min
us

t ,u
t
c

1

2
‖us

c(u
t
c)

ᵀ‖2 + λ

K∑
i=1

ξi

s.t
∑N

i=1
ut
c(i) = N, ut

c � 0

ξi > max(0, 1− cifc(X
I(i)
c ))

2

ξi > 0, i = 1, ...,K

(15)

in which K is the number of training video samples, and ci ∈
{−1, 1} is the action label of the corresponding sample. XI(i)

c

is the ith training sample (mutual information matrix) in class
c. λ is a parameter for classification error penalty.

Here we apply linear constraints to the temporal domain
but not to the spatial domain. The reason is that for the
spatial domain the number of involved key joints is uncertain.
Some spatial joints like the hip joint usually do not have
any contributions to recognition. Compared with spatial key
joints, on temporal domain every stage of an action counts
in classification. Experiment results also show that linear
constraints on the spatial domain do not bear any contribution
to performance, but the temporal constraints do.

The optimization of Eq. 15 is solved through an iterative
process. There are two steps in each iteration, 1) fix ut

c

and update us
c, 2) fix us

c then update ut
c. ut

c is initialized to 1.

Fix ut
c and Update us

c : With ut
c fixed, Eq. 15 is

treated as a l2-regularized l2 loss SVM problem shown below

min
us

c

1

2
β1‖us

c‖
2
+ λ

K∑
i=1

max(0, 1− cifc(X
I(i)
c ))

2
(16)

where β1 = ‖ut
c‖

2.

Fix us
c and Update ut

c : With updated us
c, Eq. 15 is

regarded as a convex optimization problem with linear
constraints shown below

min
ut

c

1

2
β2‖ut

c‖
2
+ λ

K∑
i=1

max(0, 1− cifc(X
I(i)
c ))

2

s.t
∑N

i=1
ut
c(i) = N, ut

c � 0

(17)

where β2 = ‖us
c‖

2.
The optimization problem defined in Eq. 15 can be solved

by solving Eq. 16 and Eq. 17 iteratively.
The time complexity is based on what optimization solution

we use. Eq. 16 is a l2-regularized l2-loss linear SVM problem.
The optimal parameters can be obtained by trust region newton
method proposed in [45]. It’s time complexity is not higher
than O(L ∗K ∗M) for each iteration, where L is the number
of conjugate gradient iterations, K is the number of training
samples, and M is the dimension of stage-descriptor. Eq. 17
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is the same problem with linear constraints. Here we use
the interior point method to obtain the optimal parameters.
It’s time complexity is around O(

√
K ∗N) when the self-

concodance condition holds, as discussed in [46]. Considering
that M � N , most of the time is consumed in the spatial
weight learning part.

In ST-NBMIM, two steps, one for spatial weight update and
one for temporal weight update, are regarded as one iteration.
Let us

c0 be the initial value of spatial weight. When ut
c0 is

fixed, we obtain us
c0 by solving the optimization problem in

Eq. 16. Likewise, fixing us
c0, we can obtain ut

c1 by solving
Eq. 17. Notice that each sperate optimization problem, as
defined in Eq. 16 and Eq. 17, is convex, so the solutions of
them are globally optimums. Therefore we have,

h(us
c0,u

t
c0) ≥ h(us

c0,u
t
c1) ≥ h(us

c1,u
t
c1) ≥ . . . (18)

where h(·) is the objective function defined in Eq. 15.
Considering that h(·) is larger than zeros, the optimization
process converges.

IV. EXPERIMENT

In this section, we evaluate the proposed method on five
3D action datasets and compare its performance to existing
methods. Implementation details are provided in Sec. IV-A.
The description of the five benchmark datasets, the MSR-
Action3D dataset [26], the UT-Kinect dataset [18], the Berke-
ley MHAD dataset [27], the SBU-Interaction dataset [24],
and the NTU RGB+D dataset [5], is provided in Sec. IV-B.
Among the five datasets, SBU-Interaction and NTU RGB+D
contain interactive actions of two people. Comparison results
on these datasets are provided and discussed in Sec. IV-C.
The experiment results show that the introduction of mutual
information helps to improve the action recognition accuracy
over ST-NBNN. The discriminative matching helps boosting
the discriminative ability of action representation. Although
ST-NBMIM is simple, it is able to achieve comparable per-
formance with state-of-the-arts and also effectively discover
the key factors of an action class.

A. Implementations

3D Action Representation. The one-vs.-all strategy is utilized
in this method. To ensure the responses of linear functions
fc(·) are comparable with each other, each sample X

I(i)
c is

mean-centralized by µi =
∑C

c=1 sum(X
I(i)
c )/(C ×M ×N),

where sum(·) sums up entries of the input matrix.
In Sec. IV-B, the setting of N is indicated. Due to the

variation of action sequences’ duration, stages defined in
Sec. III-A may have overlaps when a sequence is too short.

To ensure that the representation introduced in Sec. III-A
is location-invariant, for actions of single person each joint of
the skeleton is centralized by subtracting coordinates of the
hip joint. For interactive actions of two persons, two skeletal
poses in each frame are centralized by subtracting the average
coordinates of the two hip joints.

Nearest Neighbor Search. In our experiment, KD-tree
implementation [28] and FLANN library [29] are used to

boost the nearest neighbor searching process.

Spatio-Temporal Weight Learning. The training matrices
XI

c are generated by a leave-one-video-out strategy, which
means all the stage-descriptors of a query training video
are excluded from the nearest neighbor search. In our
optimization, us

c and ut
c are learned iteratively. To solve

the SVM problem of Eq. 16, we use a SVM toolbox [30]
implemented by Chang et al., and to update ut

c, a convex
optimization toolbox [31] is used.

B. Datasets

MSR-Action3D
There are 557 skeletal action sequences included in this
dataset, and 20 human actions are involved. The actions
recorded are common indoor daily actions. Each action is
performed by 10 subjects twice or three times. The evaluation
protocol we use is described in [26]. In this protocol, the 20
actions are grouped into three subsets AS1, AS2, and AS3,
where each subset consists of eight actions. In this dataset,
the number of poses in each local window is 10, and the
number of stages N is set to 15.

Method AS1 AS2 AS3 Ave.

Lie Group [32] 95.4 83.9 98.2 92.5
SCK+DCK [33] – – – 94.0
HBRNN [2] 93.3 94.6 95.5 94.5
ST-LSTM [6] – – – 94.8
Graph-Based [34] 93.6 95.5 95.1 94.8

ST-NBNN 91.5 95.6 97.3 94.8
ST-NBMIM 92.5 95.6 98.2 95.3

TABLE I
COMPARISON WITH STATE-OF-THE-ARTS ON MSR-ACTION3D (%)

UT-Kinect
This dataset contains 10 action classes performed by 10
subjects. Each action are performed by each subject twice.
We use the leave-one-out validation protocol described
in [18] to evaluate our proposed method. Based on the
description, there are 20 rounds of testing in our experiment.
The parameters chosen for spatio-temporal weight learning
are the same in each round. The number of local poses l is
set to 3, and the number of stages N is 15.

Method Accuracy

Key-Motif [19] 93.5
Simplices [23] 96.5
ST-LSTM [6] 97.0
Lie Group [32] 97.1
Graph-Based [34] 97.4
SCK+DCK [33] 98.2

ST-NBNN 98.0
ST-NBMIM 98.0

TABLE II
COMPARISON WITH STATE-OF-THE-ARTS ON UT-KINECT (%)
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Berkeley MHAD
The actions in this dataset are captured by a motion capture
system. 11 action classes are included, and each action
is performed by 12 subjects. We follow the experimental
protocol described in [27] on this dataset. The sequences
performed by the first seven subjects are for training while
the ones performed by the rest subjects are for testing. Due
to the high sampling rate, most of the data is redundant. We
down-sample each sequence by selecting one frame for every
ten frames. Under this setting, the number of local poses l is
20, and the number of stages N is 20.

Method Accuracy

SMIJ [12] 95.4
Meta-cognitive [36] 97.6
Kapsouras et al. [35] 98.2
HBRNN [2] 100.0
ST-LSTM [6] 100.0

ST-NBNN 100.0
ST-NBMIM 100.0

TABLE III
COMPARISON WITH STATE-OF-THE-ARTS ON MHAD (%)

SBU-Interaction
This dataset contains eight classes of two-person interactive
actions. 282 skeleton sequences are captured by Kinect depth
sensor. For each skeleton, there are 15 joints in total. We
follow the protocol proposed in [24] to evaluate our method.
There is a five-fold cross validation. The evaluation is based
on the average accuracy on these five folds. The number
of stages N is 17, and there are three poses in each stage.
Considering that there are pair actions in this dataset, when
performing the nearest neighbor search, only the related
stages are involved.

Method Accuracy

HBRNN [2] 80.4
CHARM [37] 83.9
Deep LSTM [4] 86.0
Co-occurrence [4] 90.4
ST-LSTM [6] 93.3

ST-NBNN 89.3
ST-NBMIM 93.3

TABLE IV
COMPARISON WITH STATE-OF-THE-ARTS ON SBU (%)

NTU RGB+D
NTU-RGBD dataset is currently the most challenging dataset
in 3D action recognition. It is collected with Kinect V2
depth camera. There are around 56 thousand sequences in
total. 60 different action classes are performed by 40 subjects
aged from 10 to 35. 25 joints are included in each skeletal
pose. We follow the protocol introduced in [5] to conduct
the experiment. In the nearest neighbor search, we only
search for the related stage since there are 10 pair actions
in this dataset. This dataset has two standard evaluation

settings, the cross-subject (CS) evaluation and the cross-view
(CV) evaluation. In cross-subject setting, half of the subjects
are used for training and the remaining are for testing. In
cross-view setting, two of the three views are used for training
and the left one is for testing. The number of local poses l is
set to 5, and the number of stages N is 20.

Method CS CV

Skeleton Quads [38] 38.6 41.4
Lie Group [32] 50.1 52.8
HBRNN [2] 59.1 64.0
Part-Aware LSTM [5] 62.9 70.3
ST-LSTM [6] 69.2 77.7
Two Streams [39] 71.3 79.5
GCA-LSTM [40] 74.4 82.8
New Representation [44] 79.6 84.8
Enhanced Vis. [41] 80.0 87.2

ST-NBNN 56.6 56.0
ST-NBMIM 64.5 64.1
ST-NBMIM + CNN Feature 80.0 84.2

TABLE V
COMPARISON WITH STATE-OF-THE-ARTS ON NTU RGB+D (%)

C. Results and Analysis
Comparison with Baselines
We compare the proposed method with spatio-temporal naive-
bayes nearest neighbor (ST-NBNN) and four related base-
lines on five benchmark datasets, MSR-Action3D (M.), UT-
Kinect (U.), SBU-Interaction (S.), Berkeley MHAD (B.), and
NTU RGBD (N.CS for cross-subject setting, N.CV for cross-
view setting). The baselines are (1) NBNN with N stages
(NBNN-N); (2) NBNN with weight learning by linear SVM
(NBNN+SVM); (3) Spatio-temporal NBNN (ST-NBNN); (4)
NBMIM with N stages (NBMIM-N); and (5) NBMIM with
weight learning by linear SVM (NBMIM+SVM). The results
are shown in Table. VI

Method M. U. S. B. N.CS N.CV

NBNN-N 91.7 95.5 88.1 88.0 59.9 59.6
NBNN+SVM 92.4 94.0 83.0 100.0 44.4 43.0
ST-NBNN 94.8 98.0 89.3 100.0 56.6 56.0

NBMIM-N 93.3 96.0 89.2 88.0 60.8 60.3
NBMIM+SVM 92.7 95.0 89.3 99.3 55.1 54.1
ST-NBMIM 95.3 98.0 93.3 100.0 64.5 64.1

TABLE VI
COMPARISON WITH BASELINES ON FIVE DATASETS (%)

As we can see from Table. VI, ST-NBMIM maintains or
improves the performance of ST-NBNN. On SBU interaction
dataset, ST-NBMIM improves by 4% over ST-NBNN. We
can also see the accuracy improvement or maintenance from
NBNN to NBMIM on all five benchmark datasets. As we
discussed in Sec. III-C, if we only use linear SVM as the
weight learning method, there will be a large number of
parameters to be determined, and this strategy may cause over-
fitting. From Table. VI, in most of the cases, there are drops
from NBMIM to NBMIM+SVM, which indicates the over-
fitting caused by SVM, and we can see that the performance
of ST-NBMIM is better than NBMIM+SVM.
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Fig. 3. Parameter Sensitivity Analysis on SBU Interaction Dataset. The x-axis indicates the chosen number of local poses. The sub-title indicates the chosen
number of temporal stages.

The results from NTU-RGBD dataset show that the weight
learning does not work for NBNN in this dataset. There are
3.3% and 3.6% drops from NBNN to ST-NBNN under cross-
subject setting and cross-view setting respectively. However
for NBMIM, the improvement is significant (3.7% improve-
ment under cross-subject setting, 3.8% improvement under
cross-view setting). The reason is that there are many actions
that are very similar to each other in terms of the skeleton
motion in NTU-RGBD dataset, e.g., drinking water and eat-
ing snack. The involvement of mutual information can help
suppress elements that are similar among stage-descriptors
and emphasize the elements that are discriminative. A further
weight learning by our proposed method can help pick out
those discriminative elements and improve the performance.
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Fig. 4. Comparison of Confusion Matrix between ST-NBNN and ST-NBMIM.
1. Approaching, 2. Departing, 3. Kicking, 4. Pushing, 5. Shaking Hands, 6.
Hugging, 7. Exchanging, 8. Punching

The motivation of extending ST-NBNN to ST-NBMIM via
involving mutual information is to boost the discriminative
ability of action representation. Fig. 4 shows the comparison
of confusion matrix between ST-NBNN and ST-NBMIM on
SBU Interaction dataset. As can be seen from the figure, there
are great improvements of classification accuracy on action
“Pushing” and “Shaking Hand”. The actions “Shaking Hand”
and “Exchanging” are very similar with each other. After
involving mutual information into ST-NBNN, the confusion

between these two action becomes less than before, and the
overall performance of ST-NBMIM is better than ST-NBNN.

Combination with Convolutional Neural Network
In this section, we combine the proposed method ST-NBMIM
with CNN model, ResNet18 [42]. Since our method mainly
focus on skeleton-based action recognition, we can not apply
CNN model on the data we use directly. Therefore we first
transform the pose data of each video sample to an image
by using the visualization method proposed in [43]. Then a
ResNet [42] with 18 layers is used to extract CNN features
for representing each video sample. In order to learn the
spatio-temporal weights, we randomly pick 20% of the
training samples as the validation set, and 80% of the training
samples for fine-tuning ResNet18. Then the fine-tuned ResNet
is used to extract CNN feature for both the validation set
and testing set. We use the proposed ST-NBMIM as the
classifier to predict the label of each sample based on the
extracted CNN feature. We evaluate the combination version
on NTU-RGBD dataset [5], and the results are shown in
Table. VII. As can be seen from the table, CNN feature with
ST-NBMIM can perform better than ResNet18, which means
that ST-NBMIM can benefits CNN model. Besides, as can be
seen from the Table. V, the performance of ST-NBMIM with
CNN feature is comparable with the state-of-the-arts.

Method CS CV

NBMIM-N 60.8 60.3
ST-NBMIM 64.5 64.1

Res CNN Feature + FC (ResNet18) 78.9 83.2
Res CNN Feature + ST-NBMIM 80.0 84.2

TABLE VII
COMBINATION OF CNN FEATURE AND ST-NBMIM (%)

Comparison with the State-of-the-arts
In this section we compare the proposed method ST-NBMIM
with the existing methods on five benchmark datasets. The
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Fig. 5. An Example of Spatio-Temporal Weight Matrix and Comparison between Squared Distance Matrix from NBNN (first row) and Mutual Information
Matrix from NBMIM (second row). The matrices are from the Pushing action. ST-Weight Matrix is on the top-left corner, and squared distance matrices as
well as mutual information matrices are on the right side. Each matrix is 45 by 13. The related feature of discovered joints are marked by red box.

results are shown in Table. I, Table. II, Table. III, Table. IV,
and Table. V. We can see that ST-NBMIM achieves the best
accuracy on the MSR-Action3D dataset, Berkeley MHAD
dataset and SBU-Interaction dataset. On the UT-Kinect
dataset, the result is comparable with the state-of-the-arts.

On the NTU RGBD dataset, the proposed method ST-
NBMIM can still perform better than the deep-learning-based
method HBRNN [2] and Part-Aware LSTM [5]. However,
we can also see that ST-NBMIM is not as good as other
deep-learning-based model like [6], [39], [44]. The reason
why ST-NBMIM is not better than the these models is
that, compared with them, our proposed method only uses
raw features directly from skeletal data, and only a linear
method is utilized as the classifier, which does not have such
large model capacity as the deep learning models. We also
try to combine CNN feature from ResNet18 [42] with our
ST-NBMIM classifier, and we witness great improvement
from ST-NBMIM with raw data feature. From Table. V we
can see that our combination version is comparable with the
state-of-the-arts.
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Fig. 6. Influence of Noisy Joints on Accuracy of Berkeley MHAD Dataset

Parameter Sensitivity Analysis
There are two main parameters in ST-NBMIM, the number
of temporal stages N and the number of poses in each local
stage l. The evaluation of parameter sensitivity is conducted
on the SBU interaction dataset in this section. We change l
from 1 to 10 and change N from 1 to 21. As Fig. 3 shows,
ST-NBMIM needs a sufficient number of stages to learn the
spatio-temporal weights and obtain good performance on
action recognition. When the number of stages is larger than
three, ST-NBMIM can still help improve the performance
with only one pose in each stage. However, when the number
of stages is larger than nine, further increasing N and l will
not improve the performance explicitly. Fig. 3 also shows
that when the stage number N is sufficient, ST-NBMIM
achieves better accuracy than ST-NBNN, which indicates the
effectiveness and robustness of the proposed method.

Robustness to Noise
In this section, we evaluate the tolerance and robustness of
ST-NBMIM to random noise of skeleton data on Berkeley
MHAD dataset. We randomly choose 10%, 20%, 30%, 40%
and 50% of the 35 joints. For the randomly selected joints,
we add noises ranging from -5 to 5 to each dimension of
joints coordinates. This setting will result in mismatches
of nearest neighbor search. The influence of noisy joint on
accuracy is shown in Fig. 6. As we can see, as the percentage
of noisy joints increases, the performance of NBMIM drops
dramatically. Compared with NBMIM, ST-NBMIM can still
pick out the informative elements and maintain the accuracy
at high level. The average accuracy of ST-NBMIM in these
six situations is 98.24%. We can also see that in most of the
cases, ST-NBNN can not perform better than ST-NBMIM.
The average accuracy of ST-NBNN in these six situations is
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97.58%, which is not as good as ST-NBMIM.

Time Cost Analysis
In this section, we also experimented on SBU Interaction
dataset to test the time cost of each step of the proposed
method. In the training phase, the nearest neighbor search
is conducted first to obtain the mutual information matrices
for each training sample. Then the spatio-temporal weights
learning part is conducted. In the testing phase, each
stage-descriptor of a testing sample will be a query to
search its nearest neighbors. After that class-related mutual
information matrices will be generated. The classification
part is then conducted to apply learned spatio-temporal
weights on mutual information matrices. The test results
are shown in Table. VIII and Table. IX respectively. There

Split # Sample NN Search Training

1 227 19.8 s 9.1 ms
2 230 19.7 s 13.7 ms
3 226 18.8 s 12.2 ms
4 228 20.3 s 10.8 ms
5 217 18.5 s 16.9 ms

Ave. 225.6 19.4 s 12.5 ms

TABLE VIII
TIME COST IN TRAINING PHASE

Split # Sample NN Search Testing

1 55 1.3 s 0.9 ms
2 52 1.2 s 0.8 ms
3 56 1.4 s 0.9 ms
4 54 1.3 s 1.6 ms
5 65 1.4 s 1.0 ms

Ave. 56.4 1.3 s 1.0 ms

TABLE IX
TIME COST IN TESTING PHASE

are five data splits in SBU Interaction dataset. We record
the time cost of these five data splits on training phase
and testing phase. The recorded time in Training part is
from just one round (including one spatial weight update
and one temporal weight update). In all the dataset we test,
two rounds are already enough for spatio-temporal weight
learning. This experiment is conducted on a Intel Xeon
E5-2609 CPU with 2.50GHz clock frequency. As we can see,
the proposed method does not take much time on training
and testing. However, the most time-consuming part is the
nearest neighbor search. As the number of stage-descriptors
increases in the search area, the searching time will increase
relatively. Therefore, our method is not suitable for real-time
application. However, as we witness works like [22] focusing
on boosting nearest neighbor search speed, we believe that
the situation caused by low searching speed will be alleviated.

Convergence Analysis
In this section, we record the objective function value of
each iteration in training on SBU Interation dataset. The
result is shown in Fig. IV-C. The convergence curve shown

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Iteration

O
b

je
c

ti
v

e
 V

a
lu

e

Fig. 7. Convergence Curve of ST-NBMIM

in Fig. IV-C is the average curve of eight binary classifiers of
ST-NBMIM. In most of the case, only two or three iterations
is enough for the training process to converge.

Visualization
In this section, we visualize the mutual information matrix
and learned spatio-temporal weight matrix in Fig. 5 to
help better understand the proposed method. Besides, the
discovered key joints and key temporal stages are shown in
Fig. 8. In Fig. 5, we provide an example of the learned spatio-
temporal weight matrix and the estimated mutual information
matrices XI

c from Pushing action in SBU Interaction dataset.
Due to space limitation, we only provide the first position
feature of each stage and their related weights. Elements
aij of the spatio-temporal weight matrix are determined
by aij = us

c(i) × ut
c(j), i = 1, ...,M, j = 1, ..., N . The

brighter the elements of the matrix, the larger the value
of the elements. We can see from Fig. 5 that the Pushing
matrix is the darkest one in NBNN and the brightest one
in NBMIM. For NBNN described in ST-NBNN [20] and
NBMIM described in Eq. 8, the classification is based on the
summation of elements of each class-related squared-distance
matrices of NBNN and mutual information matrices of
NBMIM respectively. As we discussed in Sec. III-C, each
elements of the matrices in NBNN and NBMIM bears the
same contribution to the classification, and the motivation
of the proposed weight learning method is to pick out those
discriminative elements shared in each class-related matrices.
Let’s take the Pushing action for example. The ideal situation
is that the elements that picked out by our weights learning
method bear very high value in matrix 5 , shown in Fig. 5,
and very low value in other class-related matrices. In this
case, the learned weight can help the summation of positive
matrix, matrix 5 (Pushing) in this case, be the maximum
one, and therefore help the classifier predict the true label.
If the elements selected by our proposed weight learning
method bear hight values in both positive matrix and negative
matrices, the selected ones are not discriminative enough
for the classification task. From Fig. 5 we can see that the
discriminative elements as we described above in the mutual
information matrices of NBMIM have more sparse pattern
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Fig. 8. Key Stages and Key Joints with Related Key Motions from MSR-Action3D. Colored joints are with weights larger than average weights. The most
informative joints are marked by bright color, and the second most informative joints are marked by light color. Other key joints are marked by dark blue.
The global key motions are indicated by different colors. For example, the key motion directing in the x direction is colored by bright red for the 1st most
informative joint, and by light red for the 2nd most informative joint. Only the motion of 1st and 2nd key joints are marked. The temporal weights for each
action are shown as gray images. Each square in this image represents a temporal stage. The whiter the square, the higher the temporal weight. The key stage
is highlighted by a red box. We illustrate each key stage using its 4 representative 3D poses. The bottom two actions have two key stages each.

than those in NBNN, which is easier for the spatio-temporal
weight learning method to discover, and therefore the mutual
information representation is more suitable than squared
distance representation in NBNN for the weights learning
method. Meanwhile, compared with the ones in NBNN,
the “negative” matrices in NBMIM have similar “sparse
pattern” making it easy for the proposed method to discover
discriminative elements and help distinguishing positive
matrices from the negative ones. We can also see that the
learned weights shown on the upper-left corner of Fig. 5
is able to correctly discover those discriminative elements.
The red-square-marked region of the spatio-temporal weight
matrix is related to the x, y, z coordinates of right and left
hands (joint 6 and 9), which are the most active joints in
“Pushing” action.

Fig. 8 shows the key spatial joints and temporal stages
discovered by the proposed method. For the “Forward Kick”
action, ST-NBMIM selects the right hand as the most discrim-
inative joint and right toe as the second most discriminative
joint. When performing “Forward Kick”, the dominant direc-
tion of joints’ motion is z, and we can see that the proposed
method discovers the direction. For the “Tennis Swing” action,

the motion direction that is discovered by the proposed method
is y-z, since when performing this action, the right hand mainly
moves “down” (y) and “forward” (z). In the MSR-Action 3D
dataset, “Side Boxing” and “Hand Catch” are similar to each
other. ST-NBMIM selects the x direction of the second most
discriminative joints for both of these two actions. In order to
differentiate these two actions, the difference is on the 1st most
informative joint (right hand). ST-NBMIM focuses on the y-z
motion direction for the “Side Boxing” action, but on the x
motion direction for the “Hand Catch” action. Interestingly, as
shown in Fig. 8 i) and j), the proposed method can also indicate
different phases of actions. The two peaks of the temporal
weight of “Hand Clap” are related to the stages when two
hands are close to each other and when the two hands are
far apart from each other. For “Pick Up and Throw”, the two
peaks of the temporal weight are related to the “Pick Up” and
“Throw” two phases respectively.

V. CONCLUSION

In this work, we combine the idea of spatio-temporal
pattern discovery with the non-parametric model NBMIM to
recognize 3D action. The spatio-temporal pattern mining in
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the proposed method ST-NBMIM is capable of discovering
critical spatial joints and temporal stages of action instances
simultaneously, which help not only increase the action recog-
nition performance, but also physically explain each action
recognized. We introduce the idea of mutual information into
our framework. The involvement of negative stage-descriptors
in mutual information calculation helps to improve the dis-
criminative ability of action representation. Experiments show
that ST-NBMIM can achieve better performance than baseline
like ST-NBNN. Despite using only a linear classifier, the
proposed method works surprisingly well on four benchmark
datasets and beats some sophisticated end-to-end models on
large scale dataset NTU RGB+D. Our results demonstrate the
efficiency of the proposed spatio-temporal pattern discovery
method for skeleton-based action recognition.
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