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Abstract

Unsupervised video representation learning has made
remarkable achievements in recent years. However, most
existing methods are designed and optimized for video clas-
sification. These pre-trained models can be sub-optimal
for temporal localization tasks due to the inherent discrep-
ancy between video-level classification and clip-level local-
ization. To bridge this gap, we make the first attempt to
propose a self-supervised pretext task, coined as Pseudo
Action Localization (PAL) to Unsupervisedly Pre-train fea-
ture encoders for Temporal Action Localization tasks (UP-
TAL). Specifically, we first randomly select temporal re-
gions, each of which contains multiple clips, from one video
as pseudo actions and then paste them onto different tem-
poral positions of the other two videos. The pretext task is
to align the features of pasted pseudo action regions from
two synthetic videos and maximize the agreement between
them. Compared to the existing unsupervised video rep-
resentation learning approaches, our PAL adapts better to
downstream TAL tasks by introducing a temporal equivari-
ant contrastive learning paradigm in a temporally dense
and scale-aware manner. Extensive experiments show that
PAL can utilize large-scale unlabeled video data to sig-
nificantly boost the performance of existing TAL methods.
Our codes and models will be made publicly available at
https://github.com/zhang-can/UP-TAL.

1. Introduction

Model pre-training is an effective technique for training
deep networks in many computer vision tasks. The core
idea is to learn general representations on large-scale la-
beled or unlabeled data, and utilize the learned representa-
tions to improve the performance of downstream tasks with
limited data. This is especially beneficial for tasks that re-
quire enormous human effort to annotate data, such as tem-
poral action localization (TAL).

Despite the prevailing use of ready-made feature extrac-
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Figure 1. Comparison of Kinetics-400 pre-trained models by
fine-tuning on downstream TAL (ActivityNet v1.3) and TAC
(UCF101) datasets. ‘TAC’ means supervised TAC pre-training,
and we treat MoCo-v2 [16] with video input as our baseline.
Instance-level discrimination is not well-aligned with TAL, thus
unsupervised pre-training tailored for TAL is on demand.

tors [10, 48, 55] pre-trained on temporal action classifica-
tion (TAC) in TAL, this pre-training strategy is sub-optimal
as the inherent discrepancy between TAC and TAL exists.
Without a doubt, this discrepancy impedes further perfor-
mance improvement of TAL. Though some recent works
[1, 61, 62] attempt to tackle this issue, they still rely on
large-scale annotated video data. Recently, unsupervised
pre-training has attracted great attention due to its potentials
in exploiting large amounts of unlabeled data. Contrastive
learning [15, 16, 25, 29, 43] is one of the most popular di-
rections that focus on instance discrimination, which pulls
instance-level positive pairs closer while repelling negative
ones apart in the embedding space. To fill the gap between
the upstream pre-training and the downstream tasks, recent
contrastive learning methods focus on specifically design-
ing pretext tasks for various downstream image tasks, e.g.,
object detection [56,59,64], semantic segmentation [51,56],
etc. In contrast, the progress of unsupervised pre-training in
video domain is relatively lagging behind and most existing
methods [2,28,32,44,45,53] are still designed and evaluated
for classification tasks.

In this paper, we make the first attempt on unsuper-
vised pre-training for TAL tasks. One possible way [45]
to achieve this is to directly extend the image contrastive
learning idea to the video domain, where a video is treated
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as an instance and the clips are regarded as views of in-
stances. Those clip embeddings from the same video are
pulled closer while those from different videos are pushed
apart. Clearly, this way only focuses on instance (video-
level) discrimination, i.e., learning time-invariant features
for specific video instances, which is required by TAC task
in essence. In contrast, TAL expects the representations to
be equivariant to temporal translation and scale. For ex-
ample, if we change the start time and duration of an ac-
tion instance in the input video, the output classification
responses of TAC should be unchanged, while the output
localization predictions of TAL need to be altered accord-
ingly. The inherent discrepancy between these two tasks
attracts our attention to question the suitability of the exist-
ing instance discrimination paradigm for TAL. Indeed, as
shown in Fig. 1, such video-level discrimination is bene-
ficial for TAC tasks, but not well-aligned with TAL tasks.
So, it is desirable and challenging to design a new learning
scheme that can be transferred well on TAL tasks.

Motivated by the inherent discrepancy between TAC and
TAL, we introduce temporal equivariant contrastive learn-
ing paradigm by designing a new unsupervised pretext task
called Pseudo Action Localization (PAL). Specifically, to
mimic the TAL-tailored data with temporal boundaries, we
first construct our training set by transforming the existing
large-scale TAC datasets in a cheap manner. We randomly
crop two temporal regions with random temporal lengths
and scales from one video as pseudo actions. Each of these
regions includes multiple consecutive clips. Then we paste
them onto different temporal positions of other randomly
selected background videos. With the preset temporal trans-
formation (paste location, clip length, sampling scale), the
model is able to align the pseudo action features of two syn-
thesized videos. Such transformation and alignment process
are named as input-level transformation and feature-level
equi-transformation in our paper. Moreover, to better align
the upstream pre-training pipeline to the downstream TAL
architecture, we follow the way of estimating temporal lo-
cations in TAL tasks [36, 38] by applying several layers of
temporal convolutions to process the sequential clip-level
features. Thereby, the information of surrounding back-
ground clips is highly involved in the final output features
of pseudo action regions. With the random paste operation,
the diversity of background-involvement is increased. Fur-
ther, we propose to maximize the agreement between two
aligned pseudo action region features such that the learned
features are forced to focus on the most discriminative and
background-irrelevant parts, thus enhancing their robust-
ness and achieving the equivariance requirement in TAL.

We summarize our main contributions as follows: (1)
To our best knowledge, this is the FIRST work focusing
on unsupervised pre-training for temporal action localiza-
tion tasks (UP-TAL). (2) We design an intuitive and effec-

tive self-supervised pretext task customized for TAL, called
PAL. A time-equivariant contrastive learning paradigm is
also introduced to perform transformed foreground discrim-
ination, customized for TAL representation learning. (3)
Extensive experiments on ActivityNet v1.3 [7], Charades-
STA [22] and THUMOS’14 [31] datasets show that PAL
transfers well on various downstream TAL-related tasks:
Temporal Action Detection (TAD), Action Proposal Gener-
ation (APG) and Video Grounding (VG). Notably, our PAL
even surpasses the supervised pre-training when using the
same amount of video data.

2. Related work
Contrastive Video Representation Learning. Re-

cently, contrastive learning [9, 15–17, 25, 29, 43] has gained
increasing attention due to its outstanding performance. Es-
sentially, these contrast-based methods focus on instance
discrimination [58], i.e., distinguishing each instance from
the rest. Following this direction, recent researches [44,
45, 53, 65] extend the contrastive learning idea to the video
domain, where clips from the same video are considered
as positives and clips from the different videos as nega-
tives. Besides, other directions, such as: dense future pre-
diction [26, 27], cross-modal supervision [2, 28, 47], etc,
have also been studied in the literature. Notably, most of
these methods are designed for TAC tasks that learn time-
invariant features. In contrast, we propose a novel pretext
task tailored for TAL, which follows a temporal equivariant
learning scheme. A concurrent work [32] also focuses on
time-equivariant representation learning. Two clips from
different videos but with the same relative transformation
(overlap/order) are considered as positive pairs, which pro-
motes detailed learning of motion patterns and thus is ben-
eficial for TAC tasks. Our method differs essentially from
it in the fact that positive pairs are constructed from two
transformed regions (multiple clips) of the same foreground
video but with different backgrounds. This facilitates the
learning of TAL-friendly features such that they are robust
to background interference but sensitive to temporal trans-
formation (scale and location).

Temporal Action Localization (TAL) Tasks. Unlike
TAC [10, 21, 35, 49, 50, 55, 69], the target of TAL is to tem-
porally localize the action of interest in untrimmed videos.
In general, TAL covers a range of tasks, such as: Ac-
tion Proposal Generation (APG), Temporal Action Detec-
tion (TAD) and Video Grounding (VG), etc. APG aims at
generating temporal proposals which are likely to contain
human actions. Previous methods design temporal anchor
instances for feature sequences [6, 30, 37] or directly pre-
dict boundary probabilities [36, 38]. TAD aims at predict-
ing the temporal extent as well as the class labels of ac-
tion instances. Most existing fully-supervised TAD meth-
ods [4, 11, 12, 36, 40, 60, 63] integrate the proposal gen-
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Figure 2. (a) Schematic depiction of temporal invariance vs. temporal equivariance. (b) Overview of our PAL pretext task. Given
a video vi, we randomly sample two pseudo action regions from it and then paste them onto another two pseudo background videos at
various temporal locations and scales. PAL learns temporal equivariant features by aligning pseudo action region features and maximizing
the agreement between region features of the same video but with different backgrounds. Negatives are omitted for brevity.

eration and classification procedures in a unified network.
Some recent works have also designed TAD algorithms un-
der weaker supervision [42, 54, 67, 68, 72]. VG, a.k.a, text-
to-video temporal grounding, aims to localize the time in-
terval corresponding to a given text query. The current lit-
erature can be roughly divided into two categories, namely
proposal-based [14,24,66,70] and proposal-free [3,8,39,41]
architectures. For these TAL tasks, we choose three rep-
resentative works (BMN [36], G-TAD [63] and LGI [41])
with officially released code to validate the efficacy of our
PAL.

Supervised Pre-training for TAL. Due to the GPU
memory constraint, the common practice in TAL is to first
pre-train a feature encoder on large-scale trimmed TAC
datasets, and then use it to extract frame-level or segment-
level features in untrimmed TAL videos. Inevitably, this
will result in a task discrepancy problem, since feature en-
coders are trained on TAC while used for TAL. This domain
gap has not been fully studied though it is common in TAL.
Recent advances try to bridge this gap through boundary
type classification [61], foreground region classification [1]
and end-to-end training [62]. Unfortunately, they all be-
long to the supervised pre-training paradigm and therefore
rely on large-scale labeled videos. In contrast, we propose
a novel method, for the first time (to our best knowledge),
focusing on Unsupervised Pre-training for TAL (UP-TAL).

Cut-Paste for Data Synthesis. Cut-Paste, which cuts a
part of one data sample and pastes it onto another sample, is
found to be a useful data augmentation strategy when fac-
ing the data shortage issue. It has been widely adopted in
supervised learning for object detection [18, 19], instance
segmentation [20, 23], and self-supervised learning for im-

age/video classification [52, 71], object detection [64] and
anomaly detection [34], etc. The most recent work rel-
evant to ours is BSP [61], which also synthesizes videos
through temporal Cut-Paste. The essential difference lies in
the fact that BSP supervisedly generates different types of
temporal boundaries and learn to predict them to facilitate
the learning of video features while our PAL synthesizes
videos without using any label information and train the
backbone by aligning pseudo action region features from
two synthetic videos and maximizing their agreement with
temporal equivariant contrastive learning.

3. Method

3.1. Intuition and Preliminaries

As mentioned in Sec. 1, the most essential difference be-
tween TAC and TAL is that the former requires temporal
invariance while the latter desires temporal equivariance
representations. This motivates us to question the suitability
of the existing “TAC features for TAL” paradigm. Thus, in
this section, we delve into the design of unsupervised pre-
training customized for TAL, to reach the task alignment
goal, i.e., “TAL features for TAL”.

For the TAC task, given a video vi from a dataset
V = {vi}Ni=1, the goal is to learn a feature encoding func-
tion F(v) with which the extracted representation is en-
sured to be insensitive to the temporal transformation T ,
i.e. ∀v ∈ V : F(T (v)) = F(v), as illustrated in Fig. 2a
top part. To achieve this objective, the learning strategy can
be basically designed as pushing F(T (v)) and F(v) close
to each other in the feature space. To be more general, two
random transformations T and T ′ are applied to v to imple-
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ment the strategy, and contrastive learning [43] is involved
to enforce the consistency:

F(T (v)) pull→← F(T ′(v)), (1)

in which the identity mapping T0(v) = v is also considered.
Under the scenario of TAL, we require F to be sensi-

tive to the transformation T , i.e. ∀v ∈ V : F(T (v)) =
T (F(v)), which can be re-written as F(v) = G(F(T (v)))
and G ≜ T -1 (See Fig. 2a bottom part). Similar to Eqn. 1,
we apply two random transformations to v, and therefore
have

F(v) = G(F(T (v))) = G′(F(T ′(v))). (2)

Intuitively, contrastive learning can be introduced here
to model the temporal equivariance by forcing the features
processed by two transformation pairs (T ,G) and (T ′,G′)
respectively to be analogous to one another:

G(F(T (v))) pull→← G′(F(T ′(v))). (3)

In the following sections, a parameterized temporal
transformation T tailored for TAL tasks is introduced. We
delicately design a new self-supervised task called Pseudo
Action Localization (PAL) with self-generated transforma-
tion signals T , and apply the contrastive strategy to learn
temporal translation and scale equivariance encoding F .

3.2. Pseudo Action Localization

As illustrated in Fig. 2b, given a large-scale trimmed
video dataset (e.g., Kinetics [10]), we randomly select two
temporal regions from one video (viewed as pseudo ac-
tion regions), and then paste them onto another two videos
(viewed as pseudo background) at various scales and loca-
tions. With the self-generated temporal locations and scales
treated as prior during pre-training, the model is expected to
localize the pseudo action regions from the synthesized new
videos. Instead of directly predicting the paste locations and
scales, we introduce the contrastive strategy to enforce the
consistency between the features of two random regions de-
fined by the priors for temporal equivariance representation
learning, as illustrated in Eqn. 3.

In this pipeline, we first perform transformation T in the
input space for TAL-tailored video generation (Sec. 3.2.1).
Then we use backbone F and multiple heads to map the
transformed videos into the feature space (Sec. 3.2.2). Next,
equi-transformation G is applied to inverse the transforma-
tion T in the feature space (Sec. 3.2.3). We finally con-
duct region contrastive learning for TAL-customized pre-
training (Sec. 3.2.4).

3.2.1 Input-Level Transformation

To learn the temporal equivariance encoding functionF , we
define the transformation T as a video region sampling and

paste operation. Specifically, given a video vi as pseudo
action video as well as a randomly selected video vn as
pseudo background, we first sample a random region from
action video vi, and paste it onto the background video vn

to generate a synthesized video vi→n. The input-level trans-
formation T is then defined as follows:

vi→n, s, e = T (vi,vn), (4)

where s and e represent the start and end clip1 indices of the
pseudo action region in the new video vi→n.

To improve the robustness of the learned representation,
we soften the paste operation in the implementation by
changing it to a blending one with blending ratio β, which
takes β of action region and mix it with (1 − β) of back-
ground region to generate the blended region. β is ran-
domized from the range [0.6, 1]. Besides, spatial data aug-
mentation is involved to increase the diversity of training
data. Following the convention [28, 44, 45], we apply ran-
dom cropping, horizontal flipping, Gaussian blurring and
color jittering, and all are temporally consistent. In partic-
ular, instead of sampling action regions with fixed stride,
we propose a scale-aware sampling strategy to add some
randomness to the action timescale. Here, we refer to the
timescale as how fast an action goes. It stems from the
observation that an action video played at different speeds
contains almost identical semantics. We simply model the
timescale variation by sampling action region frames with
different strides.

Overall, by this sample-and-paste way, our input-level
transformation mimics the temporal location and scale vari-
ance in real untrimmed action videos, which also provides a
strong supervision signal for TAL-tailored temporal equiv-
ariant contrastive learning.

3.2.2 Feature Encoding

Our feature encoder F contains a backbone Fb with non-
linear projection head Fn and a temporal embedding head
F t, namely F = Fb ◦Fn ◦F t. Formally, given the synthe-
sized video vi→n, the corresponding clip feature sequence
{c(j)i→n}Jj=1 is obtained by:

{c(j)i→n}
J
j=1 = F(vi→n), (5)

in which the backbone Fb is a clip-level encoder, and F t

is a video-level head for temporal modeling among clips.
J is the number of sampled clips. It is noted that apply-
ing temporal convolutions (F t) on chronological clip-level
features is crucial in our setting. This enables information
aggregation among neighboring clips and therefore the fea-
tures of pseudo action regions near the boundary can be

1Here we perform the temporal transformation in a clip-wise manner
to align with the clip-level video encoder.
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highly affected by the nearby background. In this way, our
PAL can learn background-insensitive boundary features by
maximizing the agreement (Sec. 3.2.4) between region fea-
tures of the same video but influenced by different pseudo
backgrounds.

3.2.3 Feature-Level Equi-Transformation

Recall that we aim at designing a TAL-tailored pre-training
paradigm by extending the contrastive strategy to learn tem-
poral equivariance representations. To this end, we pro-
pose to utilize additional free region-wise supervision in the
form of inverse temporal transformations. In our case, the
changes of pseudo action location in the input composited
videos (vi→n) will be reflected in the corresponding ones in
their feature sequences ({c(j)i→n}Jj=1) obtained by Eqn. 5.

To echo the input-level transformation T introduced
in Sec. 3.2.1, we here define the feature-level equi-
transformation G as an alignment operation. Formally, this
feature alignment process is defined as:

{c(j)i→n}
e
j=s = G({c

(j)
i→n}

J
j=1, s, e), (6)

then the region representation can be obtained by tempo-
rally averaging pooling the corresponding sequential clip-
level features, i.e., r(s,e)i→n = TempAvgPool({c(j)i→n}ej=s).

3.2.4 Contrastive Training Objective

Following the transformation T and alignment G opera-
tions introduced above, two pseudo action regions [s, e]
and [s′, e′] from video vi are extracted, and pasted onto
two pseudo background videos vn and vm to obtain region
representations r

(s,e)
i→n and r

(s′,e′)
i→m . These two representa-

tions are set as the query and positive key pair (rq, rk+)

in contrastive learning, namely rq = r
(s,e)
i→n and rk+ =

r
(s′,e′)
i→m . The region features from other composited videos

are viewed as negatives. Given the encoded query rq , posi-
tive key rk+ and negatives {rki

}Ki=1, the contrastive learn-
ing essentially encourages the query to be similar to the pos-
itive sample and dissimilar to the negative ones. Our PAL is
a pretext task and independent of the detailed loss function,
so we simply extend the InfoNCE [43] contrastive loss to
ensure region consistency in this work:

L = −log exp(rq · rk+/τ)

exp(rq · rk+/τ) +
∑K

i=1 exp(rq · rki
/τ)

, (7)

where τ is a temperature hyper-parameter and K is the
number of negative samples. Equipped with our proposed
PAL, by minimizing the region contrastive loss, the encod-
ing backbone Fb is encouraged to learn temporal equivari-
ant features, which we believe is beneficial to the TAL tasks.

4. Experiments
4.1. Experimental Settings

To evaluate our proposed PAL, we follow the pre-
training and transferring procedures: first pre-train the fea-
ture network on a large-scale trimmed dataset without cate-
gory labels, then transfer the features pre-computed by the
frozen backbone to the downstream TAL tasks.

4.1.1 Pre-training

Datasets. To have an apple-to-apple comparison with other
self-supervised video representation learning methods, we
use Kinetics [10] as the initial pre-training dataset, without
using any labels. Kinetics is a large-scale trimmed action
recognition benchmark. Each video has a single action class
and lasts around 10 seconds. The typical version Kinetics-
400 (K400) includes ∼300k videos with 400 human action
classes, and the latest version Kinetics-700 (K700) contains
∼650k videos with 700 action classes.
Implementation Details. We choose I3D [10], the com-
monly used feature encoder in TAL, as the default backbone
(Fb) in our experiments. For temporal embedding head
(F t), we employ two-layer temporal convolutions with a
kernel size of 3 followed by ReLU activation function. We
uniformly sample 8 clips (8 frames per clip) with a resolu-
tion of 112 × 112 for each video, and the max clip length
of the pseudo action region is limited to 6. The range of
the blending ratio β is set as [0.6, 1.0]. For our scale-aware
sampling strategy, the sampling stride of frames within a
clip is chosen from [1, 4]. Following [16], we also maintain
a memory queue of 16,384 negative samples and use syn-
chronized BN across all layers. We apply L2 norm to the
output features from F t. The temperature τ is set to 0.07
for all experiments. For optimization, we train our PAL us-
ing the Adam algorithm with a weight decay of 10−5. The
initial learning rate is set as 10−4 and decreases by a factor
of 10 when the validation loss saturates. The training takes
200 epochs in total with a batch size of 512 on 64 NVIDIA
Tesla V100 GPUs.

4.1.2 Transferring to TAL tasks

Target TAL Tasks. We choose three popular temporal lo-
calization tasks to evaluate our PAL features: Temporal Ac-
tion Detection (TAD), Action Proposal Generation (APG)
and Video Grounding (VG).
Datasets. (1) ActivityNet v1.3 [7] is a popular large-scale
benchmark for TAD and APG tasks, including 10,024 train-
ing videos, 4,926 validation videos corresponded to 200 ac-
tion classes. Each video contains 1.65 action instances on
average; (2) Charades-STA [22] is commonly used for VG
task, containing 12,408 and 3,720 text query pairs in train-
ing and test set, respectively. The average duration of videos
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Table 1. Comparison to state-of-the-art pre-training methods on the target tasks. We use G-TAD [63] and BMN [36] as the evaluation
methods for TAD and APG tasks, respectively. The results are conducted on ActivityNet v1.3 dataset. Rows highlighted in blue use
fully-supervised pre-training. † represents results from [62]. * means our implementation. (TR: temporal resolution, SR: spatial resolution)

Method Modal Dataset Backbone TR×SR2 FLOPs TAD Task (G-TAD [63]) APG Task (BMN [36])

(per clip) (per clip) mAP@0.5 @0.75 @0.95 AVG AR@1 @10 @100 AUC

CoCLR [28] V+F K400 S3D 32×1282 47.2G 47.9 32.2 7.3 31.9 32.7 53.5 73.9 65.0
XDC [2] V+A IG65M R(2+1)D-18 32×2242 325.2G 48.4 32.6 7.6 32.3 33.2 54.1 74.0 65.4

MoCo-v2 [16] * V K400 I3D 8×1122 3.6G 46.6 30.7 6.3 30.3 30.8 53.5 72.4 64.0
VideoMoCo [44] V K400 R(2+1)D-18 32×1122 81.3G 47.8 32.1 7.0 31.7 31.8 53.9 72.8 65.1

RSPNet [13] V K400 R(2+1)D-18 16×1122 40.6G 47.1 31.2 7.1 30.9 31.5 53.3 72.2 64.1
AoT [57] † V K400 TSM-Res50 8×2242 33G 44.1 28.9 5.9 28.8 - - - -

SpeedNet [5] † V K400 TSM-Res50 8×2242 33G 44.5 29.5 6.1 29.4 - - - -
PAL (Ours) V K400 I3D 8×1122 3.6G 49.3 34.0 7.9 33.4 33.7 55.9 75.0 66.8
PAL (Ours) V K700 I3D 8×1122 3.6G 50.7 35.5 8.7 34.6 34.2 57.8 76.0 68.1

TAC * V K400 I3D 8×1122 3.6G 48.5 32.9 7.2 32.5 32.3 54.6 73.5 65.6
BSP [61] V K400 TSM-Res50 8×2242 33G 50.9 35.6 8.0 34.8 33.7 57.4 75.5 67.6

LoFi-E2E [62] V K400+ANet TSM-Res18 8×2242 14.6G 50.4 35.4 8.9 34.4 - - - -
TSP [1] V K400+ANet R(2+1)D-34 16×1122 76.4G 51.3 37.1 9.3 35.8 35.0 59.0 76.6 69.0

is 30 seconds and the maximum length of a text query is
10; (3) THUMOS’14 [31] is a standard benchmark for TAD
and APG tasks, containing 200 validation videos and 213
test videos of 20 action categories. The video length varies
greatly, from less than a second to about 26 minutes. On
average, each video contains ∼16 action instances.
Evaluation Metrics. We follow the standard evaluation
protocol. For the TAD task, we report mean Average Pre-
cision (mAP) values under different temporal Intersection
over Union (tIoU) thresholds. For the APG task, we report
the Area Under the Curve (AUC) of the average recall vs.
average number (AR-AN) of proposals per video. For the
VG task, the top-1 recall at three tIoU thresholds and their
mean value (mIoU) are reported.
Implementation Details. To validate the efficacy of our
pre-training strategy, we retrain several state-of-the-art TAL
methods by only replacing the original features with our
PAL features. We choose those representative works
with publicly-available codes. Specifically, we choose G-
TAD [63] for TAD task, BMN [36] for APG task, and
LGI [41] for VG task.

4.2. Main Results
In this section, we compare the performance of our PAL

with other state-of-the-art pre-training approaches on three
challenging TAL tasks. For those self-supervised methods
designed for TAC tasks, we directly use their released pre-
trained models to extract the video features for the down-
stream TAL task evaluations.

Temporal Action Detection (TAD) & Action Proposal
Generation (APG). In Table 1, we report our TAD and
APG results on ActivityNet v1.3 and compare them with
state-of-the-art pre-training methods. When pre-trained
on K400, our PAL consistently outperforms other self-
supervised methods, which strongly demonstrates the ef-

fectiveness of our method. Although these self-supervised
pre-training competitors have achieved promising results
on TAC tasks, the task discrepancy issue still harms their
transferability on TAL tasks, which verifies the necessity
of our work. Compared to our baseline MoCo-v2 [16],
which focuses on learning temporal invariant features, our
proposed temporal equivariant learning scheme is more
suitable for TAL, so it yields an improvement of +3.1%
mAP@AVG and +2.8% AUC gains under the same settings.
Notably, when using the same backbone (I3D) and pre-
training dataset (K400), our unsupervised PAL even sur-
passes the supervised counterpart TAC by gains of +0.9%
on mAP@AVG and +1.2% on AUC. It suggests that the
proper use of data may benefit more than action label an-
notation information in TAL, which is consistent with our
motivation. When pre-trained on a larger dataset K700,
our PAL further improves the performance, showing its po-
tential benefit of leveraging large-scale web videos. Com-
pared to recent fully-supervised pre-training methods in-
cluding BSP [61], LoFi-E2E [62] and TSP [1], our first at-
tempt on unsupervised TAL pre-training achieves competi-
tive results. Note that both LoFi-E2E [62] and TSP [1] use
the downstream dataset ActivityNet (ANet) for feature pre-
training which can lead to unfair comparison.

Video Grounding (VG). The VG results on Charades-
STA are reported in Table 2. Note that the original
LGI [41] exploits I3D features fine-tuned on the down-
stream Charades-STA dataset. For fair comparison, we
retrain the LGI model using K400 pre-trained I3D fea-
tures, without changing any hyper-parameters in the orig-
inal codebase. Clearly, our PAL achieves the best VG per-
formance under the unsupervised pre-training setting and
even surpasses the supervised TAC trained features. Note
that BSP [61] feature, which is pre-trained in a supervised
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Table 2. Comparison to state-of-the-art pre-training methods
on the VG task. We use LGI [41] as the evaluation method. The
results are conducted on Charades-STA dataset. Rows highlighted
in blue use fully-supervised pre-training. * Our implementation.

Method VG Task (LGI [41])

(K400 pre-trained) R@0.3 R@0.5 R@0.7 mIoU

MoCo-v2 [16] * 54.2 40.9 21.1 38.7
VideoMoCo [44] 59.1 44.5 23.4 42.3

RSPNet [13] 55.8 41.5 21.4 39.6
PAL (Ours) 63.7 50.0 27.2 46.8

TAC * 61.6 46.8 24.6 44.3
BSP [61] 68.8 53.6 29.3 50.6

manner and has much more per-clip FLOPs (33G vs. 3.6G),
performs better than ours as expected.

Overall, to our best knowledge, as the first unsupervised
pre-training work customized for TAL, PAL consistently
surpasses other unsupervised pre-training methods on three
typical TAL tasks, demonstrating the efficacy of our idea.

4.3. Ablation Study

In this section, we conduct ablation experiments to fully
understand the concept of our PAL. For ease of experimen-
tation, all the ablation studies are conducted with 100 train-
ing epochs on K400 and evaluated on the TAD task.

Effectiveness of the key PAL components. In Table 3,
we examine how each design in PAL affects the overall per-
formance. We consider three key components in PAL: (1)
dense sampling strategy to select multiple clips as region
sample; (2) scale-aware sampling strategy to sample pseudo
action regions with different strides; (3) paste operation to
paste the selected regions onto the background videos. We
start with the basic setting that does not involve any of the
above designs, where only one clip is randomly sampled
from each video and clip-level contrastive learning is per-
formed. Then we introduce the dense sampling strategy
to contrast region-level embeddings, which brings +0.5%
improvement due to more temporal clues being included.
Next, a scale-aware sampling strategy is applied along with
dense sampling, leading to an overall +1.1% gain. This ver-
ifies that adding some randomness to the temporal scale fa-
cilitates representation learning. The biggest improvement
is achieved after introducing paste operation. We infer that
this is because attracting the region features of the same
video but influenced by different backgrounds yields more
background-insensitive features, which benefits localization
tasks. Finally, pasting pseudo action regions onto different
background videos further contributes a reasonable gain of
+0.7% and the final improvement reaches +3.2% compared
with baseline. In summary, by adding these key components
step by step, the performance consistently boosts, verifying
the effectiveness of our PAL.

Table 3. Contribution of each design in PAL on TAL tasks.
Dense sampling strategy (dense), scale-aware sampling strategy
(scale) and paste operation (paste) are involved step by step. All
these designs contribute to the overall performance.

Exp.
Setting TAD Task

dense scale paste mAP@AVG

#0 (Baseline) ✗ ✗ ✗ 29.6
#1 ✓ ✗ ✗ 30.1 (+0.5)
#2 ✓ ✓ ✗ 30.7 (+1.1)
#3 ✓ ✓ same bkg. 32.1 (+2.5)

#4 (PAL) ✓ ✓ diff bkg. 32.8 (+3.2)

Table 4. Ablation study on
temporal embedding head.

Num. Recep. mAP@AVG

0 1 30.8
1 3 32.1 (+1.3)
2 5 32.8 (+2.0)
3 7 32.5 (+1.7)

Table 5. Ablation study on
paste ratios.

β mAP@AVG

1 32.2
[0, 0.4] 30.7 (-1.5)
[0.4, 0.6] 31.5 (-0.7)
[0.6, 1.0] 32.8 (+0.6)
[0, 1.0] 31.3 (-0.9)

Number of the temporal embedding head layers. In
Table 4, we experiment with the different numbers of the
temporal embedding head layers. When the layer num-
ber is 0, the input clips are processed independently with-
out temporal fusion, and therefore the surrounding back-
ground clips have no substantial effect on the action re-
gions. It’s obvious that attaching a single temporal convo-
lution layer atop the backbone significantly boosts the per-
formance (+1.3%). This verifies our hypothesis that intro-
ducing background semantics can help promote the local-
ization power required by TAL. Since using two temporal
embedding layers yields the best performance, we choose
this setting as our default.

Hard paste vs. Soft paste. In PAL, β controls the
paste ratio of pseudo action regions onto the background
videos. We evaluate different β from 0 to 1. In partic-
ular, β = 1 means the “hard” paste and β < 1 is the
“soft” paste. For the soft way, we test several representative
intervals: [0, 0.4], [0.4, 0.6], [0.6, 1.0] and [0, 1.0], which
indicates four cases, i.e., background-dominated, half-and-
half, action-dominated and purely random, respectively. As
shown in Table 5, the β ∈ [0.6, 1.0] setting outperforms
hard paste and achieves the best result, partially because the
action-dominated soft paste serves as an effective data aug-
mentation strategy. So we use this setting by default.

Evaluation on THUMOS’14. THUMOS’14 is a rela-
tively small-scale dataset compared with ActivityNet v1.3
(cf. Sec. 4.1.2). We list the experimental results in Ta-
ble 6. Compared with the relative performance gain on Ac-
tivityNet v1.3, our improvement on THUMOS’14 is more
prominent, which confirms the generalization ability of
PAL under the small-scale data condition.
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Table 6. TAD results on small-scale THUMOS’14 dataset.

Method TAD Task (G-TAD [41])

(K400, 100 epochs) mAP@0.3 @0.4 @0.5 @0.6 @0.7

TAC * 44.6 37.3 29.5 18.8 9.5
MoCo-v2 [16] * 41.5 34.1 25.8 17.3 7.9

PAL (Ours) 46.8 40.3 30.8 19.3 10.9

Table 7. Comparison on TAC task.

Method Backbone
TAC Task (Top-1 Acc.)

(K400, pre-trained) UCF101 HMDB51

MoCo-v2 [16] * 3D-Res50 82.0 49.4
AoT [57] T-CAM 79.4 -

SpeedNet [5] S3D-G 81.1 48.8
VTHCL [65] 3D-Res50 82.1 49.2

VideoMoCo [44] R(2+1)D-18 78.7 49.2
CoCLR [28] S3D 87.9 54.6
PAL (Ours) 3D-Res50 84.7 52.5

Evaluation on TAC task. We investigate the transfer-
ring ability of our PAL on TAC downstream task. Fol-
lowing the common practice, all layers are fine-tuned end-
to-end. The results are evaluated on UCF101 [46] and
HMDB51 [33] datasets. Although our PAL feature is de-
signed for TAL tasks, we observe in Table 7 that it still
achieves competitive performance on TAC tasks. In de-
tail, our PAL outperforms baseline MoCo-v2 by +2.7% &
+3.1% at top-1 accuracy on UCF101 and HMDB51 re-
spectively. Notably, it even exceeds the recently proposed
VTHCL [65] with the same backbone.

4.4. Feature Visualization

Recall that PAL is proposed to guide the network in
learning temporal translation and scale equivariance abil-
ity. To confirm this, we apply temporal transformations
on the action instances in real-world videos and investi-
gate whether these changes will be reflected in feature space
accordingly. Specifically, given a video from ActivityNet
v1.3, we first crop the action instance based on the tem-
poral annotations, then re-sample the action instance with
different temporal strides and insert them back into ran-
dom temporal locations. Here, we consider two temporal
transformations: (1) 2× down-sampling the action instance
and moving backward along the time axis; and (2) 2× up-
sampling the action instance and moving forward along the
time axis. Next, MoCo-v2 [16] (baseline), VideoMoCo [44]
and our PAL encoders are applied to extract features for the
original video and the two transformed videos.

We visualize the cosine similarity between each clip fea-
tures pair within the same video in Fig. 3. We also plot
the ground-truth annotations (green bars) to indicate the ac-
tion clips. As can be seen, MoCo-v2 and VideoMoCo learn
time-invariant features that are insensitive to the temporal

time

time

Down-sampling
Move backward

Up-sampling
Move forwardOriginal

(a) MoCo-v2 [16] (baseline)

time

time
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Figure 3. Feature similarity visualization under different tem-
poral transformations (2nd & 3rd columns) of ground-truth
action instance. The green bars represent the temporal extent of
ground truth actions. Brighter color means higher similarity.

transformations. There is a high similarity between the
pseudo action region and the background, while the salient
area of PAL features changes accordingly. This confirms
that our method successfully learns the time-equivariant
characteristic, which is naturally more beneficial for TAL
tasks. Besides, our introduced time-equivariant learning
scheme can not only better separate the action and back-
ground clips, but also enable sharper contrast between ac-
tion and its surrounding background clips. In this way,
the clip features become more informative and boundary-
aware, which facilitates localization. More visualization re-
sults can be found in our supplementary materials.

5. Discussion and Conclusion
This paper presents a new pretext task called Pseudo

Action Localization (PAL), which is delicately designed
to pre-train representations in an unsupervised manner for
TAL tasks (UP-TAL). Motivated by the essential discrep-
ancy between TAC and TAL, we also introduce a temporal
scale and location equivariance learning scheme to facili-
tate better task alignment for the downstream transferring
process. On a variety of downstream TAL tasks includ-
ing temporal action detection, action proposal generation
and video grounding, we demonstrate the effectiveness of
our proposed method, which consistently surpasses its TAC
counterpart and other unsupervised pre-training methods.
Acknowledgements. This paper was partially supported by the National
Natural Science Foundation of China (NSFC) 62176008. Special acknowl-
edgements are given to Aoto-PKUSZ Joint Lab for its support.
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